Properties

Label 1.8.2t1.b.a
Dimension $1$
Group $C_2$
Conductor $8$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_2$
Conductor: \(8\)\(\medspace = 2^{3} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin field: Galois closure of \(\Q(\sqrt{-2}) \)
Galois orbit size: $1$
Smallest permutation container: $C_2$
Parity: odd
Dirichlet character: \(\displaystyle\left(\frac{-8}{\bullet}\right)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{2} + 2 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 3 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 1 + 3 + 2\cdot 3^{2} +O(3^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 2 + 3 + 2\cdot 3^{3} + 2\cdot 3^{4} +O(3^{5})\) Copy content Toggle raw display

Generators of the action on the roots $ r_{ 1 }, r_{ 2 } $

Cycle notation
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 } $ Character value
$1$$1$$()$$1$
$1$$2$$(1,2)$$-1$

The blue line marks the conjugacy class containing complex conjugation.