Normalized defining polynomial
\( x^{8} - 2x^{7} + 16x^{6} - 9x^{5} + 39x^{4} - 33x^{3} + 50x^{2} - 497x + 484 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(49680238593241\)
\(\medspace = 17^{4}\cdot 29^{6}\)
|
| |
| Root discriminant: | \(51.53\) |
| |
| Galois root discriminant: | $17^{1/2}29^{6/7}\approx 73.91089459661771$ | ||
| Ramified primes: |
\(17\), \(29\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{367721}a^{7}-\frac{55028}{367721}a^{6}+\frac{156030}{367721}a^{5}-\frac{156881}{367721}a^{4}-\frac{84251}{367721}a^{3}+\frac{136846}{367721}a^{2}+\frac{102692}{367721}a+\frac{38118}{367721}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}\times C_{2}$, which has order $8$ |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}$, which has order $8$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{2880}{367721}a^{7}+\frac{7111}{367721}a^{6}+\frac{11338}{367721}a^{5}+\frac{111829}{367721}a^{4}+\frac{52980}{367721}a^{3}-\frac{448153}{367721}a^{2}-\frac{262445}{367721}a+\frac{566703}{367721}$, $\frac{13045}{367721}a^{7}-\frac{48868}{367721}a^{6}+\frac{75615}{367721}a^{5}-\frac{145280}{367721}a^{4}+\frac{63774}{367721}a^{3}-\frac{129385}{367721}a^{2}+\frac{2215863}{367721}a-\frac{2483529}{367721}$, $\frac{24948}{367721}a^{7}-\frac{136051}{367721}a^{6}+\frac{677376}{367721}a^{5}-\frac{1683469}{367721}a^{4}+\frac{3308777}{367721}a^{3}-\frac{3932687}{367721}a^{2}+\frac{783251}{367721}a+\frac{1144521}{367721}$
|
| |
| Regulator: | \( 1033.12249118 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 1033.12249118 \cdot 8}{2\cdot\sqrt{49680238593241}}\cr\approx \mathstrut & 0.913775363124 \end{aligned}\]
Galois group
| A solvable group of order 56 |
| The 8 conjugacy class representatives for $C_2^3:C_7$ |
| Character table for $C_2^3:C_7$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 14 sibling: | 14.6.29550964508103979773361.1 |
| Degree 28 sibling: | deg 28 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.7.0.1}{7} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.7.0.1}{7} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.7.0.1}{7} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | R | ${\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | R | ${\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.7.0.1}{7} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(17\)
| 17.2.2.2a1.2 | $x^{4} + 32 x^{3} + 262 x^{2} + 96 x + 26$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 17.2.2.2a1.2 | $x^{4} + 32 x^{3} + 262 x^{2} + 96 x + 26$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(29\)
| $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 29.1.7.6a1.1 | $x^{7} + 29$ | $7$ | $1$ | $6$ | $C_7$ | $$[\ ]_{7}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *56 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.29.7t1.a.a | $1$ | $ 29 $ | 7.7.594823321.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.29.7t1.a.b | $1$ | $ 29 $ | 7.7.594823321.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.29.7t1.a.c | $1$ | $ 29 $ | 7.7.594823321.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.29.7t1.a.d | $1$ | $ 29 $ | 7.7.594823321.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.29.7t1.a.e | $1$ | $ 29 $ | 7.7.594823321.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.29.7t1.a.f | $1$ | $ 29 $ | 7.7.594823321.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| *56 | 7.496...241.8t25.a.a | $7$ | $ 17^{4} \cdot 29^{6}$ | 8.0.49680238593241.2 | $C_2^3:C_7$ (as 8T25) | $1$ | $-1$ |