# Properties

 Label 1.29.7t1.a.b Dimension $1$ Group $C_7$ Conductor $29$ Root number not computed Indicator $0$

# Related objects

## Basic invariants

 Dimension: $1$ Group: $C_7$ Conductor: $$29$$ Artin field: 7.7.594823321.1 Galois orbit size: $6$ Smallest permutation container: $C_7$ Parity: even Dirichlet character: $$\chi_{29}(16,\cdot)$$ Projective image: $C_1$ Projective field: $$\Q$$

## Defining polynomial

 $f(x)$ $=$ $$x^{7} - x^{6} - 12 x^{5} + 7 x^{4} + 28 x^{3} - 14 x^{2} - 9 x - 1$$  .

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 6.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $$x^{7} + 4 x + 9$$

Roots:
 $r_{ 1 }$ $=$ $$a^{6} + 3 a^{5} + 3 a^{4} + 5 a^{3} + 10 a^{2} + 8 a + 2 + \left(9 a^{6} + 7 a^{5} + 6 a^{4} + 6 a^{3} + 10 a^{2} + 3 a + 9\right)\cdot 11 + \left(5 a^{6} + 3 a^{5} + 8 a^{4} + a^{3} + 10 a^{2} + 4 a + 5\right)\cdot 11^{2} + \left(8 a^{6} + 9 a^{4} + 8 a^{3} + 5 a^{2} + 5 a + 2\right)\cdot 11^{3} + \left(8 a^{6} + 4 a^{5} + 6 a^{4} + 5 a^{3} + 4 a^{2} + 7 a\right)\cdot 11^{4} + \left(8 a^{6} + 7 a^{5} + 3 a^{4} + 6 a^{3} + 3 a^{2} + a + 5\right)\cdot 11^{5} +O(11^{6})$$ $r_{ 2 }$ $=$ $$5 a^{6} + 2 a^{5} + 8 a^{4} + 2 a^{3} + 6 a^{2} + 9 a + \left(6 a^{6} + 7 a^{5} + 6 a^{4} + 4 a^{3} + 10 a^{2} + 2 a + 8\right)\cdot 11 + \left(4 a^{6} + 3 a^{4} + 9 a^{3} + 7 a^{2} + 2 a + 4\right)\cdot 11^{2} + \left(9 a^{6} + 5 a^{5} + a^{4} + 5 a^{3} + 10 a^{2} + 2\right)\cdot 11^{3} + \left(8 a^{6} + a^{5} + 6 a^{4} + 2 a^{3} + 8 a^{2} + 8 a + 5\right)\cdot 11^{4} + \left(10 a^{6} + 6 a^{5} + 5 a^{4} + 6 a^{2} + 3 a + 2\right)\cdot 11^{5} +O(11^{6})$$ $r_{ 3 }$ $=$ $$6 a^{6} + 10 a^{5} + 9 a^{4} + 10 a^{3} + 4 a^{2} + 7 a + 5 + \left(9 a^{6} + 4 a^{5} + 5 a^{4} + 7 a^{3} + 7 a^{2} + 8 a + 4\right)\cdot 11 + \left(10 a^{6} + a^{5} + 10 a^{4} + 10 a^{3} + 3 a^{2} + 5 a + 7\right)\cdot 11^{2} + \left(10 a^{5} + a^{4} + 6 a^{2} + 3 a + 9\right)\cdot 11^{3} + \left(3 a^{5} + 10 a^{4} + 9 a^{2} + 5 a + 1\right)\cdot 11^{4} + \left(3 a^{6} + 2 a^{5} + 7 a^{4} + 6 a^{3} + 7 a^{2} + 8 a + 7\right)\cdot 11^{5} +O(11^{6})$$ $r_{ 4 }$ $=$ $$7 a^{6} + 10 a^{4} + 6 a^{3} + 7 a^{2} + 7 a + 10 + \left(9 a^{5} + 5 a^{4} + 2 a^{3} + 10 a^{2} + 9 a + 6\right)\cdot 11 + \left(10 a^{5} + 8 a^{4} + 8 a^{3} + 2 a^{2} + 5 a + 9\right)\cdot 11^{2} + \left(3 a^{6} + 6 a^{4} + 4 a^{3} + 10 a^{2}\right)\cdot 11^{3} + \left(2 a^{6} + 9 a^{5} + 10 a^{4} + 4 a^{2} + a + 3\right)\cdot 11^{4} + \left(10 a^{6} + 8 a^{5} + 8 a^{4} + 2 a^{3} + a^{2} + 6 a + 8\right)\cdot 11^{5} +O(11^{6})$$ $r_{ 5 }$ $=$ $$7 a^{6} + 8 a^{5} + 7 a^{4} + 7 a^{3} + 2 a^{2} + 10 + \left(7 a^{6} + 3 a^{5} + 4 a^{3} + 4 a^{2} + 7 a + 8\right)\cdot 11 + \left(10 a^{6} + 5 a^{5} + 6 a^{4} + 9 a^{3} + 6 a^{2} + 5 a + 6\right)\cdot 11^{2} + \left(3 a^{6} + 7 a^{5} + 6 a^{4} + 3 a^{3} + a + 2\right)\cdot 11^{3} + \left(3 a^{6} + 6 a^{5} + 3 a^{3} + 3 a^{2} + 4 a + 5\right)\cdot 11^{4} + \left(3 a^{6} + 8 a^{5} + 9 a^{4} + 3 a^{3} + 3 a + 3\right)\cdot 11^{5} +O(11^{6})$$ $r_{ 6 }$ $=$ $$9 a^{6} + 3 a^{5} + 4 a^{4} + 2 a^{2} + 6 a + 9 + \left(8 a^{6} + 4 a^{5} + 2 a^{4} + a^{3} + 10 a^{2} + 2 a + 9\right)\cdot 11 + \left(9 a^{6} + 5 a^{4} + 6 a^{3} + 8 a^{2} + 10 a + 6\right)\cdot 11^{2} + \left(2 a^{6} + 10 a^{5} + 9 a^{4} + 4 a^{2} + 8 a + 3\right)\cdot 11^{3} + \left(7 a^{6} + 10 a^{4} + a^{3} + 8 a^{2} + 4 a + 1\right)\cdot 11^{4} + \left(7 a^{6} + 6 a^{5} + 5 a^{4} + 7 a^{3} + 9 a^{2} + 8 a + 1\right)\cdot 11^{5} +O(11^{6})$$ $r_{ 7 }$ $=$ $$9 a^{6} + 7 a^{5} + 3 a^{4} + 3 a^{3} + 2 a^{2} + 7 a + 9 + \left(a^{6} + 7 a^{5} + 5 a^{4} + 6 a^{3} + a^{2} + 9 a + 7\right)\cdot 11 + \left(2 a^{6} + 10 a^{5} + a^{4} + 9 a^{3} + 3 a^{2} + 9 a + 2\right)\cdot 11^{2} + \left(4 a^{6} + 9 a^{5} + 8 a^{4} + 8 a^{3} + 5 a^{2} + a\right)\cdot 11^{3} + \left(2 a^{6} + 6 a^{5} + 9 a^{4} + 8 a^{3} + 4 a^{2} + 2 a + 5\right)\cdot 11^{4} + \left(4 a^{5} + 2 a^{4} + 7 a^{3} + 3 a^{2} + a + 5\right)\cdot 11^{5} +O(11^{6})$$

## Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

 Cycle notation $(1,5,3,6,7,2,4)$

## Character values on conjugacy classes

 Size Order Action on $r_1, \ldots, r_{ 7 }$ Character value $1$ $1$ $()$ $1$ $1$ $7$ $(1,5,3,6,7,2,4)$ $\zeta_{7}^{2}$ $1$ $7$ $(1,3,7,4,5,6,2)$ $\zeta_{7}^{4}$ $1$ $7$ $(1,6,4,3,2,5,7)$ $-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - \zeta_{7} - 1$ $1$ $7$ $(1,7,5,2,3,4,6)$ $\zeta_{7}$ $1$ $7$ $(1,2,6,5,4,7,3)$ $\zeta_{7}^{3}$ $1$ $7$ $(1,4,2,7,6,3,5)$ $\zeta_{7}^{5}$

The blue line marks the conjugacy class containing complex conjugation.