Normalized defining polynomial
\( x^{8} - 2x^{7} + 6x^{6} - 34x^{5} + 101x^{4} + 370x^{3} + 3170x^{2} + 1842x + 1049 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(273318794910736\) \(\medspace = 2^{4}\cdot 19^{4}\cdot 107^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(63.77\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2/3}19^{1/2}107^{1/2}\approx 71.57401056858944$ | ||
Ramified primes: | \(2\), \(19\), \(107\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3}a^{5}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3306}a^{6}-\frac{299}{3306}a^{5}+\frac{316}{1653}a^{4}+\frac{277}{3306}a^{3}-\frac{241}{551}a^{2}-\frac{83}{1102}a-\frac{781}{3306}$, $\frac{1}{4737498}a^{7}+\frac{61}{2368749}a^{6}-\frac{110073}{1579166}a^{5}+\frac{241961}{1579166}a^{4}-\frac{341057}{4737498}a^{3}-\frac{188679}{1579166}a^{2}-\frac{958649}{2368749}a-\frac{150277}{4737498}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$, $3$ |
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{108235}{4737498}a^{7}-\frac{148528}{2368749}a^{6}+\frac{678391}{4737498}a^{5}-\frac{1577261}{4737498}a^{4}+\frac{1346173}{4737498}a^{3}+\frac{74796781}{4737498}a^{2}+\frac{72311831}{2368749}a+\frac{105160285}{4737498}$, $\frac{63259}{4737498}a^{7}-\frac{248449}{4737498}a^{6}+\frac{174926}{2368749}a^{5}-\frac{172249}{1579166}a^{4}-\frac{406359}{789583}a^{3}+\frac{64288265}{4737498}a^{2}+\frac{12641491}{1579166}a+\frac{11731367}{2368749}$, $\frac{57346}{789583}a^{7}-\frac{22028}{27227}a^{6}+\frac{109530}{27227}a^{5}-\frac{11576859}{789583}a^{4}+\frac{35638632}{789583}a^{3}-\frac{51228369}{789583}a^{2}-\frac{41191562}{789583}a-\frac{33415538}{789583}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 12781.1766438 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 12781.1766438 \cdot 2}{2\cdot\sqrt{273318794910736}}\cr\approx \mathstrut & 1.20491264448 \end{aligned}\] (assuming GRH)
Galois group
A solvable group of order 24 |
The 5 conjugacy class representatives for $S_4$ |
Character table for $S_4$ |
Intermediate fields
\(\Q(\sqrt{-19}) \), 4.2.870124.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 24 |
Degree 4 sibling: | 4.2.870124.1 |
Degree 6 siblings: | 6.0.1256459056.2, 6.2.66129424.1 |
Degree 12 siblings: | deg 12, deg 12 |
Minimal sibling: | 4.2.870124.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.2.0.1}{2} }^{4}$ | ${\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.0.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
2.6.4.1 | $x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
\(19\) | 19.4.2.1 | $x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
19.4.2.1 | $x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(107\) | 107.4.2.2 | $x^{4} - 863490 x^{3} - 7789624396 x^{2} - 96572315 x + 22898$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
107.4.2.2 | $x^{4} - 863490 x^{3} - 7789624396 x^{2} - 96572315 x + 22898$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |