Defining polynomial
\(x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $6$ |
Ramification exponent $e$: | $3$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $4$ |
Discriminant root field: | $\Q_{2}(\sqrt{5})$ |
Root number: | $1$ |
$\card{ \Gal(K/\Q_{ 2 }) }$: | $6$ |
This field is Galois over $\Q_{2}.$ | |
Visible slopes: | None |
Intermediate fields
$\Q_{2}(\sqrt{5})$, 2.3.2.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{2} + x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{3} + 2 x + 2 \)
$\ \in\Q_{2}(t)[x]$
|
Ramification polygon
Not computedInvariants of the Galois closure
Galois group: | $S_3$ (as 6T2) |
Inertia group: | Intransitive group isomorphic to $C_3$ |
Wild inertia group: | $C_1$ |
Unramified degree: | $2$ |
Tame degree: | $3$ |
Wild slopes: | None |
Galois mean slope: | $2/3$ |
Galois splitting model: |
$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$
|