Normalized defining polynomial
\( x^{6} - x^{5} + 36x^{4} + 5x^{3} + 344x^{2} - 789x + 3303 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-1256459056\)
\(\medspace = -\,2^{4}\cdot 19^{3}\cdot 107^{2}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(32.85\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2/3}19^{1/2}107^{1/2}\approx 71.57401056858944$ | ||
Ramified primes: |
\(2\), \(19\), \(107\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-19}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{6099657}a^{5}+\frac{236381}{6099657}a^{4}-\frac{914733}{2033219}a^{3}+\frac{974966}{6099657}a^{2}+\frac{1072925}{6099657}a+\frac{839386}{2033219}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{4}$, which has order $4$
Unit group
Rank: | $2$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{5419}{6099657}a^{5}+\frac{20669}{6099657}a^{4}+\frac{49795}{2033219}a^{3}+\frac{1037792}{6099657}a^{2}+\frac{1207454}{6099657}a+\frac{321831}{2033219}$, $\frac{4524199}{6099657}a^{5}+\frac{12320294}{6099657}a^{4}+\frac{57091055}{2033219}a^{3}+\frac{571009070}{6099657}a^{2}+\frac{2294343536}{6099657}a+\frac{236301530}{2033219}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 30.9505959551 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 30.9505959551 \cdot 4}{2\cdot\sqrt{1256459056}}\cr\approx \mathstrut & 0.433176059288 \end{aligned}\]
Galois group
A solvable group of order 24 |
The 5 conjugacy class representatives for $S_4$ |
Character table for $S_4$ |
Intermediate fields
3.1.76.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
Galois closure: | deg 24 |
Twin sextic algebra: | \(\Q\) $\times$ \(\Q\) $\times$ 4.2.870124.1 |
Degree 4 sibling: | 4.2.870124.1 |
Degree 6 sibling: | 6.2.66129424.1 |
Degree 8 sibling: | 8.0.273318794910736.1 |
Degree 12 siblings: | deg 12, deg 12 |
Minimal sibling: | 4.2.870124.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.2.0.1}{2} }^{3}$ | ${\href{/padicField/5.3.0.1}{3} }^{2}$ | ${\href{/padicField/7.3.0.1}{3} }^{2}$ | ${\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{3}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.6.4.1 | $x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
\(19\)
| 19.2.1.2 | $x^{2} + 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
19.4.2.1 | $x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(107\)
| $\Q_{107}$ | $x + 105$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{107}$ | $x + 105$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
107.4.2.2 | $x^{4} - 863490 x^{3} - 7789624396 x^{2} - 96572315 x + 22898$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |