Normalized defining polynomial
\( x^{8} - 2x^{7} - 41x^{6} - 218x^{5} + 865x^{4} + 5296x^{3} + 36682x^{2} + 71584x + 99628 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(1046738867982336\)
\(\medspace = 2^{12}\cdot 3^{8}\cdot 79^{4}\)
|
| |
| Root discriminant: | \(75.42\) |
| |
| Galois root discriminant: | $2^{3/2}3^{7/6}79^{1/2}\approx 90.57326071147344$ | ||
| Ramified primes: |
\(2\), \(3\), \(79\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-474}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{7}a^{4}-\frac{1}{7}a^{3}+\frac{3}{7}a-\frac{2}{7}$, $\frac{1}{7}a^{5}-\frac{1}{7}a^{3}+\frac{3}{7}a^{2}+\frac{1}{7}a-\frac{2}{7}$, $\frac{1}{42}a^{6}-\frac{1}{14}a^{4}-\frac{1}{21}a^{3}+\frac{5}{14}a^{2}+\frac{1}{7}a+\frac{2}{21}$, $\frac{1}{451049155662}a^{7}+\frac{1096326965}{150349718554}a^{6}+\frac{2913141393}{150349718554}a^{5}+\frac{14851953835}{451049155662}a^{4}-\frac{39373331857}{150349718554}a^{3}-\frac{2980706563}{21478531222}a^{2}+\frac{3937004}{32217796833}a-\frac{26194091043}{75174859277}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}\times C_{20}$, which has order $80$ |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{20}$, which has order $80$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{31075}{10739265611}a^{7}+\frac{39602609}{225524577831}a^{6}-\frac{75391023}{75174859277}a^{5}-\frac{537267533}{75174859277}a^{4}-\frac{3260231725}{225524577831}a^{3}+\frac{18374973662}{75174859277}a^{2}+\frac{47491771968}{75174859277}a+\frac{33380106971}{32217796833}$, $\frac{4208381}{150349718554}a^{7}+\frac{185879495}{225524577831}a^{6}-\frac{101105881}{21478531222}a^{5}-\frac{3306456515}{75174859277}a^{4}-\frac{27372473603}{451049155662}a^{3}+\frac{16429975210}{10739265611}a^{2}+\frac{295520651976}{75174859277}a+\frac{3023034124991}{225524577831}$, $\frac{67682089}{150349718554}a^{7}-\frac{40347192}{75174859277}a^{6}-\frac{787702145}{21478531222}a^{5}+\frac{4664133268}{75174859277}a^{4}+\frac{12803138979}{150349718554}a^{3}+\frac{253331999983}{75174859277}a^{2}+\frac{572419280340}{75174859277}a+\frac{964530442601}{75174859277}$
|
| |
| Regulator: | \( 612.159317198 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 612.159317198 \cdot 80}{2\cdot\sqrt{1046738867982336}}\cr\approx \mathstrut & 1.17957281016 \end{aligned}\]
Galois group
| A solvable group of order 24 |
| The 5 conjugacy class representatives for $S_4$ |
| Character table for $S_4$ |
Intermediate fields
| \(\Q(\sqrt{-474}) \), 4.2.17064.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 24 |
| Degree 4 sibling: | 4.2.17064.1 |
| Degree 6 siblings: | 6.0.552077462016.4, 6.2.291180096.5 |
| Degree 12 siblings: | deg 12, deg 12 |
| Minimal sibling: | 4.2.17064.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.2.6a1.1 | $x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ |
| 2.2.2.6a1.1 | $x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.1.6.7a1.3 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ | |
|
\(79\)
| 79.2.2.2a1.2 | $x^{4} + 156 x^{3} + 6090 x^{2} + 468 x + 88$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 79.2.2.2a1.2 | $x^{4} + 156 x^{3} + 6090 x^{2} + 468 x + 88$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |