Normalized defining polynomial
\( x^{6} + 54x^{4} - 106x^{3} + 492x^{2} - 492x + 913 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[0, 3]$ |
| |
| Discriminant: |
\(-552077462016\)
\(\medspace = -\,2^{9}\cdot 3^{7}\cdot 79^{3}\)
|
| |
| Root discriminant: | \(90.57\) |
| |
| Galois root discriminant: | $2^{3/2}3^{7/6}79^{1/2}\approx 90.57326071147344$ | ||
| Ramified primes: |
\(2\), \(3\), \(79\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-474}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{6181}a^{5}-\frac{1870}{6181}a^{4}-\frac{1492}{6181}a^{3}+\frac{329}{883}a^{2}+\frac{2039}{6181}a+\frac{255}{6181}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}\times C_{4}$, which has order $16$ |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{4}$, which has order $16$ |
|
Unit group
| Rank: | $2$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{79}{6181}a^{5}+\frac{614}{6181}a^{4}-\frac{429}{6181}a^{3}+\frac{1267}{883}a^{2}-\frac{5806}{6181}a+\frac{26326}{6181}$, $\frac{584986}{883}a^{5}+\frac{673002}{883}a^{4}+\frac{29112982}{883}a^{3}-\frac{33398956}{883}a^{2}+\frac{101107064}{883}a+\frac{14292297}{883}$
|
| |
| Regulator: | \( 539.870734096 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 539.870734096 \cdot 16}{2\cdot\sqrt{552077462016}}\cr\approx \mathstrut & 1.44184763203 \end{aligned}\]
Galois group
| A solvable group of order 24 |
| The 5 conjugacy class representatives for $S_4$ |
| Character table for $S_4$ |
Intermediate fields
| 3.1.17064.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | deg 24 |
| Twin sextic algebra: | \(\Q\) $\times$ \(\Q\) $\times$ 4.2.17064.1 |
| Degree 4 sibling: | 4.2.17064.1 |
| Degree 6 sibling: | 6.2.291180096.5 |
| Degree 8 sibling: | 8.0.1046738867982336.20 |
| Degree 12 siblings: | deg 12, deg 12 |
| Minimal sibling: | 4.2.17064.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.3.0.1}{3} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{3}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{3}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.2 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.2.2.6a1.1 | $x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
|
\(3\)
| 3.1.6.7a1.3 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ |
|
\(79\)
| 79.1.2.1a1.2 | $x^{2} + 237$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 79.2.2.2a1.2 | $x^{4} + 156 x^{3} + 6090 x^{2} + 468 x + 88$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |