Defining polynomial
\(x^{6} + 6 x^{2} + 6\)
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $6$ |
Ramification index $e$: | $6$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $7$ |
Discriminant root field: | $\Q_{3}(\sqrt{3})$ |
Root number: | $i$ |
$\Aut(K/\Q_{3})$ $=$$\Gal(K/\Q_{3})$: | $S_3$ |
This field is Galois over $\Q_{3}.$ | |
Visible Artin slopes: | $[\frac{3}{2}]$ |
Visible Swan slopes: | $[\frac{1}{2}]$ |
Means: | $\langle\frac{1}{3}\rangle$ |
Rams: | $(1)$ |
Jump set: | undefined |
Roots of unity: | $2 = (3 - 1)$ |
Intermediate fields
$\Q_{3}(\sqrt{3})$, 3.1.3.3a1.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{3}$ |
Relative Eisenstein polynomial: |
\( x^{6} + 6 x^{2} + 6 \)
|
Ramification polygon
Residual polynomials: | $z^3 + 2$,$2 z^2 + 1$ |
Associated inertia: | $1$,$1$ |
Indices of inseparability: | $[2, 0]$ |
Invariants of the Galois closure
Galois degree: | $6$ |
Galois group: | $S_3$ (as 6T2) |
Inertia group: | $S_3$ (as 6T2) |
Wild inertia group: | $C_3$ |
Galois unramified degree: | $1$ |
Galois tame degree: | $2$ |
Galois Artin slopes: | $[\frac{3}{2}]$ |
Galois Swan slopes: | $[\frac{1}{2}]$ |
Galois mean slope: | $1.1666666666666667$ |
Galois splitting model: | $x^{6} - 3 x^{5} + 18 x^{4} - 31 x^{3} + 75 x^{2} - 60 x + 16$ |