Properties

Label 3.1.6.7a1.3
Base \(\Q_{3}\)
Degree \(6\)
e \(6\)
f \(1\)
c \(7\)
Galois group $S_3$ (as 6T2)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{6} + 6 x^{2} + 6\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $6$
Ramification index $e$: $6$
Residue field degree $f$: $1$
Discriminant exponent $c$: $7$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $i$
$\Aut(K/\Q_{3})$ $=$$\Gal(K/\Q_{3})$: $S_3$
This field is Galois over $\Q_{3}.$
Visible Artin slopes:$[\frac{3}{2}]$
Visible Swan slopes:$[\frac{1}{2}]$
Means:$\langle\frac{1}{3}\rangle$
Rams:$(1)$
Jump set:undefined
Roots of unity:$2 = (3 - 1)$

Intermediate fields

$\Q_{3}(\sqrt{3})$, 3.1.3.3a1.2 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{6} + 6 x^{2} + 6 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^3 + 2$,$2 z^2 + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois degree: $6$
Galois group: $S_3$ (as 6T2)
Inertia group: $S_3$ (as 6T2)
Wild inertia group: $C_3$
Galois unramified degree: $1$
Galois tame degree: $2$
Galois Artin slopes: $[\frac{3}{2}]$
Galois Swan slopes: $[\frac{1}{2}]$
Galois mean slope: $1.1666666666666667$
Galois splitting model:$x^{6} - 3 x^{5} + 18 x^{4} - 31 x^{3} + 75 x^{2} - 60 x + 16$