Show commands:
Magma
magma: G := TransitiveGroup(6, 2);
Group action invariants
Degree $n$: | $6$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $2$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_3$ | ||
CHM label: | $D_{6}(6) = [3]2$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $6$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,3,5)(2,4,6), (1,4)(2,3)(5,6) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Low degree siblings
3T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2 $ | $3$ | $2$ | $(1,2)(3,6)(4,5)$ |
$ 3, 3 $ | $2$ | $3$ | $(1,3,5)(2,4,6)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $6=2 \cdot 3$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 6.1 | magma: IdentifyGroup(G);
|
Character table: |
2 1 1 . 3 1 . 1 1a 2a 3a 2P 1a 1a 3a 3P 1a 2a 1a X.1 1 1 1 X.2 1 -1 1 X.3 2 . -1 |
magma: CharacterTable(G);
Indecomposable integral representations
Complete
list of indecomposable integral representations:
|
Triv $\oplus$ $(A',L)$ | $\cong$ | $L$ $\oplus$ $(A',\textrm{Triv})$ |
Sign $\oplus$ $(A,L)$ | $\cong$ | $L$ $\oplus$ $(A,\textrm{Sign})$ |
Triv $\oplus$ $(A+A',L)$ | $\cong$ | $(A,L)$ $\oplus$ $(A',L)$ |