Show commands: Magma
Group invariants
Abstract group: | $S_3$ |
| |
Order: | $6=2 \cdot 3$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $6$ |
| |
Transitive number $t$: | $2$ |
| |
CHM label: | $D_{6}(6) = [3]2$ | ||
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $6$ |
| |
Generators: | $(1,3,5)(2,4,6)$, $(1,4)(2,3)(5,6)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Low degree siblings
3T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{6}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{3}$ | $3$ | $2$ | $3$ | $(1,2)(3,6)(4,5)$ |
3A | $3^{2}$ | $2$ | $3$ | $4$ | $(1,3,5)(2,4,6)$ |
Malle's constant $a(G)$: $1/3$
Character table
1A | 2A | 3A | ||
Size | 1 | 3 | 2 | |
2 P | 1A | 1A | 3A | |
3 P | 1A | 2A | 1A | |
Type | ||||
6.1.1a | R | |||
6.1.1b | R | |||
6.1.2a | R |
Indecomposable integral representations
Complete
list of indecomposable integral representations:
|
Triv $\oplus$ $(A',L)$ | $\cong$ | $L$ $\oplus$ $(A',\textrm{Triv})$ |
Sign $\oplus$ $(A,L)$ | $\cong$ | $L$ $\oplus$ $(A,\textrm{Sign})$ |
Triv $\oplus$ $(A+A',L)$ | $\cong$ | $(A,L)$ $\oplus$ $(A',L)$ |
Regular extensions
$f_{ 1 } =$ |
$x^{6} - t x^{4} + \left(2 t + 45\right) x^{2} + \left(-t + 18\right)$
|