Group action invariants
| Degree $n$ : | $6$ | |
| Transitive number $t$ : | $2$ | |
| Group : | $S_3$ | |
| CHM label : | $D_{6}(6) = [3]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,5)(2,4,6), (1,4)(2,3)(5,6) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Low degree siblings
3T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2 $ | $3$ | $2$ | $(1,2)(3,6)(4,5)$ |
| $ 3, 3 $ | $2$ | $3$ | $(1,3,5)(2,4,6)$ |
Group invariants
| Order: | $6=2 \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [6, 1] |
| Character table: |
2 1 1 .
3 1 . 1
1a 2a 3a
2P 1a 1a 3a
3P 1a 2a 1a
X.1 1 1 1
X.2 1 -1 1
X.3 2 . -1
|
Indecomposable integral representations
|
Complete
list of indecomposable integral representations:
|
| Triv $\oplus$ $(A',L)$ | $\cong$ | $L$ $\oplus$ $(A',\textrm{Triv})$ |
| Sign $\oplus$ $(A,L)$ | $\cong$ | $L$ $\oplus$ $(A,\textrm{Sign})$ |
| Triv $\oplus$ $(A+A',L)$ | $\cong$ | $(A,L)$ $\oplus$ $(A',L)$ |