Group action invariants
| Degree $n$ : | $6$ | |
| Transitive number $t$ : | $8$ | |
| Group : | $S_4$ | |
| CHM label : | $S_{4}(6c) = 1/2[2^{3}]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,5)(2,4)(3,6), (1,4)(2,5), (1,3,5)(2,4,6) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Low degree siblings
4T5, 6T7, 8T14, 12T8, 12T9, 24T10Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 1, 1 $ | $6$ | $4$ | $(2,3,5,6)$ |
| $ 2, 2, 1, 1 $ | $3$ | $2$ | $(2,5)(3,6)$ |
| $ 2, 2, 2 $ | $6$ | $2$ | $(1,2)(3,6)(4,5)$ |
| $ 3, 3 $ | $8$ | $3$ | $(1,2,3)(4,5,6)$ |
Group invariants
| Order: | $24=2^{3} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [24, 12] |
| Character table: |
2 3 2 3 2 .
3 1 . . . 1
1a 4a 2a 2b 3a
2P 1a 2a 1a 1a 3a
3P 1a 4a 2a 2b 1a
X.1 1 1 1 1 1
X.2 1 -1 1 -1 1
X.3 2 . 2 . -1
X.4 3 -1 -1 1 .
X.5 3 1 -1 -1 .
|