Normalized defining polynomial
\( x^{6} - 96 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[2, 2]$ |
| |
| Discriminant: |
\(362797056\)
\(\medspace = 2^{11}\cdot 3^{11}\)
|
| |
| Root discriminant: | \(26.71\) |
| |
| Galois root discriminant: | $2^{11/6}3^{11/6}\approx 26.706109521254483$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{6}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}$, $\frac{1}{4}a^{3}$, $\frac{1}{8}a^{4}$, $\frac{1}{16}a^{5}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{3}$, which has order $3$ |
| |
| Narrow class group: | $C_{6}$, which has order $6$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{8}a^{5}+\frac{1}{4}a^{4}-a^{2}-2a+1$, $\frac{1}{16}a^{5}+\frac{1}{8}a^{4}-\frac{1}{2}a^{3}+\frac{1}{2}a^{2}+a-5$, $\frac{1}{2}a^{3}+5$
|
| |
| Regulator: | \( 92.1352330419 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{2}\cdot 92.1352330419 \cdot 3}{2\cdot\sqrt{362797056}}\cr\approx \mathstrut & 1.14578952794 \end{aligned}\]
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_{6}$ |
| Character table for $D_{6}$ |
Intermediate fields
| \(\Q(\sqrt{6}) \), 3.1.972.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | 12.0.131621703842267136.67 |
| Twin sextic algebra: | 3.1.972.1 $\times$ \(\Q(\sqrt{-2}) \) $\times$ \(\Q\) |
| Degree 6 sibling: | 6.0.120932352.2 |
| Minimal sibling: | 6.0.120932352.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.6.0.1}{6} }$ | ${\href{/padicField/11.2.0.1}{2} }^{3}$ | ${\href{/padicField/13.2.0.1}{2} }^{3}$ | ${\href{/padicField/17.2.0.1}{2} }^{3}$ | ${\href{/padicField/19.1.0.1}{1} }^{6}$ | ${\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }$ | ${\href{/padicField/37.6.0.1}{6} }$ | ${\href{/padicField/41.2.0.1}{2} }^{3}$ | ${\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.6.11a1.2 | $x^{6} + 10$ | $6$ | $1$ | $11$ | $D_{6}$ | $$[3]_{3}^{2}$$ |
|
\(3\)
| 3.1.6.11a1.3 | $x^{6} + 9 x^{2} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $$[\frac{5}{2}]_{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *12 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.8.2t1.b.a | $1$ | $ 2^{3}$ | \(\Q(\sqrt{-2}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| *12 | 1.24.2t1.a.a | $1$ | $ 2^{3} \cdot 3 $ | \(\Q(\sqrt{6}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
| *12 | 2.972.3t2.c.a | $2$ | $ 2^{2} \cdot 3^{5}$ | 3.1.972.1 | $S_3$ (as 3T2) | $1$ | $0$ |
| *12 | 2.15552.6t3.i.a | $2$ | $ 2^{6} \cdot 3^{5}$ | 6.2.362797056.11 | $D_{6}$ (as 6T3) | $1$ | $0$ |