Group action invariants
| Degree $n$ : | $6$ | |
| Transitive number $t$ : | $3$ | |
| Group : | $D_{6}$ | |
| CHM label : | $D(6) = S(3)[x]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4)(2,3)(5,6), (1,2,3,4,5,6) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Low degree siblings
6T3, 12T3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1 $ | $3$ | $2$ | $(2,6)(3,5)$ |
| $ 2, 2, 2 $ | $3$ | $2$ | $(1,2)(3,6)(4,5)$ |
| $ 6 $ | $2$ | $6$ | $(1,2,3,4,5,6)$ |
| $ 3, 3 $ | $2$ | $3$ | $(1,3,5)(2,4,6)$ |
| $ 2, 2, 2 $ | $1$ | $2$ | $(1,4)(2,5)(3,6)$ |
Group invariants
| Order: | $12=2^{2} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [12, 4] |
| Character table: |
2 2 2 2 1 1 2
3 1 . . 1 1 1
1a 2a 2b 6a 3a 2c
2P 1a 1a 1a 3a 3a 1a
3P 1a 2a 2b 2c 1a 2c
5P 1a 2a 2b 6a 3a 2c
X.1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1
X.3 1 -1 1 -1 1 -1
X.4 1 1 -1 -1 1 -1
X.5 2 . . 1 -1 -2
X.6 2 . . -1 -1 2
|