Show commands:
Magma
magma: G := TransitiveGroup(6, 3);
Group action invariants
Degree $n$: | $6$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $3$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_{6}$ | ||
CHM label: | $D(6) = S(3)[x]2$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,4)(2,3)(5,6), (1,2,3,4,5,6) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Low degree siblings
6T3, 12T3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 1, 1 $ | $3$ | $2$ | $(2,6)(3,5)$ |
$ 2, 2, 2 $ | $3$ | $2$ | $(1,2)(3,6)(4,5)$ |
$ 6 $ | $2$ | $6$ | $(1,2,3,4,5,6)$ |
$ 3, 3 $ | $2$ | $3$ | $(1,3,5)(2,4,6)$ |
$ 2, 2, 2 $ | $1$ | $2$ | $(1,4)(2,5)(3,6)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $12=2^{2} \cdot 3$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 12.4 | magma: IdentifyGroup(G);
|
Character table: |
2 2 2 2 1 1 2 3 1 . . 1 1 1 1a 2a 2b 6a 3a 2c 2P 1a 1a 1a 3a 3a 1a 3P 1a 2a 2b 2c 1a 2c 5P 1a 2a 2b 6a 3a 2c X.1 1 1 1 1 1 1 X.2 1 -1 -1 1 1 1 X.3 1 -1 1 -1 1 -1 X.4 1 1 -1 -1 1 -1 X.5 2 . . 1 -1 -2 X.6 2 . . -1 -1 2 |
magma: CharacterTable(G);