Properties

Label 2.15552.6t3.i.a
Dimension $2$
Group $D_{6}$
Conductor $15552$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{6}$
Conductor: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.2.362797056.11
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Determinant: 1.3.2t1.a.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.972.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 96 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: \( x^{2} + 21x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 5 a + 10 + \left(17 a + 2\right)\cdot 23 + \left(7 a + 7\right)\cdot 23^{2} + \left(3 a + 10\right)\cdot 23^{3} + \left(5 a + 21\right)\cdot 23^{4} + 10\cdot 23^{5} + \left(13 a + 17\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 5 a + 3 + \left(17 a + 14\right)\cdot 23 + \left(7 a + 17\right)\cdot 23^{2} + \left(3 a + 13\right)\cdot 23^{3} + \left(5 a + 17\right)\cdot 23^{4} + 16\cdot 23^{5} + \left(13 a + 2\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 16 + 11\cdot 23 + 10\cdot 23^{2} + 3\cdot 23^{3} + 19\cdot 23^{4} + 5\cdot 23^{5} + 8\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 18 a + 13 + \left(5 a + 20\right)\cdot 23 + \left(15 a + 15\right)\cdot 23^{2} + \left(19 a + 12\right)\cdot 23^{3} + \left(17 a + 1\right)\cdot 23^{4} + \left(22 a + 12\right)\cdot 23^{5} + \left(9 a + 5\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 18 a + 20 + \left(5 a + 8\right)\cdot 23 + \left(15 a + 5\right)\cdot 23^{2} + \left(19 a + 9\right)\cdot 23^{3} + \left(17 a + 5\right)\cdot 23^{4} + \left(22 a + 6\right)\cdot 23^{5} + \left(9 a + 20\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 7 + 11\cdot 23 + 12\cdot 23^{2} + 19\cdot 23^{3} + 3\cdot 23^{4} + 17\cdot 23^{5} + 14\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6)(3,5)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,4)(2,5)(3,6)$$-2$
$3$$2$$(2,6)(3,5)$$0$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$2$$3$$(1,3,5)(2,4,6)$$-1$
$2$$6$$(1,2,3,4,5,6)$$1$