Basic invariants
| Dimension: | $2$ |
| Group: | $D_{6}$ |
| Conductor: | \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin stem field: | Galois closure of 6.2.362797056.11 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $D_{6}$ |
| Parity: | odd |
| Determinant: | 1.3.2t1.a.a |
| Projective image: | $S_3$ |
| Projective stem field: | Galois closure of 3.1.972.1 |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{6} - 96 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$:
\( x^{2} + 21x + 5 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 5 a + 10 + \left(17 a + 2\right)\cdot 23 + \left(7 a + 7\right)\cdot 23^{2} + \left(3 a + 10\right)\cdot 23^{3} + \left(5 a + 21\right)\cdot 23^{4} + 10\cdot 23^{5} + \left(13 a + 17\right)\cdot 23^{6} +O(23^{7})\)
|
| $r_{ 2 }$ | $=$ |
\( 5 a + 3 + \left(17 a + 14\right)\cdot 23 + \left(7 a + 17\right)\cdot 23^{2} + \left(3 a + 13\right)\cdot 23^{3} + \left(5 a + 17\right)\cdot 23^{4} + 16\cdot 23^{5} + \left(13 a + 2\right)\cdot 23^{6} +O(23^{7})\)
|
| $r_{ 3 }$ | $=$ |
\( 16 + 11\cdot 23 + 10\cdot 23^{2} + 3\cdot 23^{3} + 19\cdot 23^{4} + 5\cdot 23^{5} + 8\cdot 23^{6} +O(23^{7})\)
|
| $r_{ 4 }$ | $=$ |
\( 18 a + 13 + \left(5 a + 20\right)\cdot 23 + \left(15 a + 15\right)\cdot 23^{2} + \left(19 a + 12\right)\cdot 23^{3} + \left(17 a + 1\right)\cdot 23^{4} + \left(22 a + 12\right)\cdot 23^{5} + \left(9 a + 5\right)\cdot 23^{6} +O(23^{7})\)
|
| $r_{ 5 }$ | $=$ |
\( 18 a + 20 + \left(5 a + 8\right)\cdot 23 + \left(15 a + 5\right)\cdot 23^{2} + \left(19 a + 9\right)\cdot 23^{3} + \left(17 a + 5\right)\cdot 23^{4} + \left(22 a + 6\right)\cdot 23^{5} + \left(9 a + 20\right)\cdot 23^{6} +O(23^{7})\)
|
| $r_{ 6 }$ | $=$ |
\( 7 + 11\cdot 23 + 12\cdot 23^{2} + 19\cdot 23^{3} + 3\cdot 23^{4} + 17\cdot 23^{5} + 14\cdot 23^{6} +O(23^{7})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $2$ | |
| $1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-2$ | |
| $3$ | $2$ | $(2,6)(3,5)$ | $0$ | ✓ |
| $3$ | $2$ | $(1,2)(3,6)(4,5)$ | $0$ | |
| $2$ | $3$ | $(1,3,5)(2,4,6)$ | $-1$ | |
| $2$ | $6$ | $(1,2,3,4,5,6)$ | $1$ |