Normalized defining polynomial
\( x^{4} - 2x^{3} + x^{2} - 4x + 6 \)
Invariants
| Degree: | $4$ |
| |
| Signature: | $[0, 2]$ |
| |
| Discriminant: |
\(5056\)
\(\medspace = 2^{6}\cdot 79\)
|
| |
| Root discriminant: | \(8.43\) |
| |
| Galois root discriminant: | $2^{2}79^{1/2}\approx 35.552777669262355$ | ||
| Ramified primes: |
\(2\), \(79\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{79}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $1$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental unit: |
$2a^{3}+2a^{2}+4a-1$
|
| |
| Regulator: | \( 5.93141729959 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{2}\cdot 5.93141729959 \cdot 1}{2\cdot\sqrt{5056}}\cr\approx \mathstrut & 1.64658702139 \end{aligned}\]
Galois group
| A solvable group of order 24 |
| The 5 conjugacy class representatives for $S_4$ |
| Character table for $S_4$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | deg 24 |
| Degree 6 siblings: | 6.2.1597696.1, 6.2.504871936.3 |
| Degree 8 sibling: | 8.0.2552632508416.5 |
| Degree 12 siblings: | deg 12, deg 12 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.4.0.1}{4} }$ | ${\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.4.0.1}{4} }$ | ${\href{/padicField/19.4.0.1}{4} }$ | ${\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.4.0.1}{4} }$ | ${\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }$ | ${\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.4.0.1}{4} }$ | ${\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.2 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.1.2.3a1.4 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
|
\(79\)
| 79.2.1.0a1.1 | $x^{2} + 78 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 79.1.2.1a1.1 | $x^{2} + 79$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *24 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.316.2t1.a.a | $1$ | $ 2^{2} \cdot 79 $ | \(\Q(\sqrt{79}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
| 2.316.3t2.a.a | $2$ | $ 2^{2} \cdot 79 $ | 3.3.316.1 | $S_3$ (as 3T2) | $1$ | $2$ | |
| 3.1597696.6t8.b.a | $3$ | $ 2^{8} \cdot 79^{2}$ | 4.0.5056.1 | $S_4$ (as 4T5) | $1$ | $-1$ | |
| *24 | 3.5056.4t5.b.a | $3$ | $ 2^{6} \cdot 79 $ | 4.0.5056.1 | $S_4$ (as 4T5) | $1$ | $-1$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.