Normalized defining polynomial
\( x^{8} - 4x^{7} + 10x^{6} - 4x^{5} + 18x^{4} + 132x^{3} + 170x^{2} + 100x + 2625 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(2552632508416\)
\(\medspace = 2^{16}\cdot 79^{4}\)
|
| |
| Root discriminant: | \(35.55\) |
| |
| Galois root discriminant: | $2^{2}79^{1/2}\approx 35.552777669262355$ | ||
| Ramified primes: |
\(2\), \(79\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{10840}a^{6}+\frac{479}{2710}a^{5}-\frac{487}{2168}a^{4}-\frac{533}{1355}a^{3}-\frac{5247}{10840}a^{2}+\frac{303}{2710}a-\frac{71}{2168}$, $\frac{1}{54200}a^{7}+\frac{1}{54200}a^{6}-\frac{447}{10840}a^{5}-\frac{49}{200}a^{4}+\frac{19473}{54200}a^{3}-\frac{10303}{54200}a^{2}-\frac{1399}{10840}a-\frac{991}{2168}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{6}$, which has order $12$ |
| |
| Narrow class group: | $C_{2}\times C_{6}$, which has order $12$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{87}{13550}a^{7}-\frac{1127}{54200}a^{6}+\frac{21}{2710}a^{5}+\frac{333}{54200}a^{4}+\frac{951}{13550}a^{3}+\frac{34681}{54200}a^{2}+\frac{1637}{2710}a-\frac{9563}{2168}$, $\frac{72}{6775}a^{7}-\frac{3019}{54200}a^{6}+\frac{441}{2710}a^{5}-\frac{5979}{54200}a^{4}-\frac{1559}{6775}a^{3}+\frac{191437}{54200}a^{2}-\frac{18233}{2710}a+\frac{36325}{2168}$, $\frac{2}{271}a^{7}-\frac{149}{10840}a^{6}+\frac{79}{2710}a^{5}-\frac{129}{2168}a^{4}-\frac{283}{1355}a^{3}-\frac{2077}{10840}a^{2}-\frac{3327}{2710}a-\frac{8329}{2168}$
|
| |
| Regulator: | \( 606.540382836 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 606.540382836 \cdot 12}{2\cdot\sqrt{2552632508416}}\cr\approx \mathstrut & 3.55006493556 \end{aligned}\]
Galois group
| A solvable group of order 24 |
| The 5 conjugacy class representatives for $S_4$ |
| Character table for $S_4$ |
Intermediate fields
| \(\Q(\sqrt{79}) \), 4.0.5056.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 24 |
| Degree 4 sibling: | 4.0.5056.1 |
| Degree 6 siblings: | 6.2.1597696.1, 6.2.504871936.3 |
| Degree 12 siblings: | deg 12, deg 12 |
| Minimal sibling: | 4.0.5056.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ | ${\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.4.8b1.2 | $x^{4} + 2 x^{2} + 4 x + 10$ | $4$ | $1$ | $8$ | $C_2^2$ | $$[2, 3]$$ |
| 2.1.4.8b1.2 | $x^{4} + 2 x^{2} + 4 x + 10$ | $4$ | $1$ | $8$ | $C_2^2$ | $$[2, 3]$$ | |
|
\(79\)
| 79.2.2.2a1.2 | $x^{4} + 156 x^{3} + 6090 x^{2} + 468 x + 88$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 79.2.2.2a1.2 | $x^{4} + 156 x^{3} + 6090 x^{2} + 468 x + 88$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |