Normalized defining polynomial
\( x^{27} - 360 x^{25} + 54000 x^{23} - 9216 x^{22} - 4446720 x^{21} + 1935360 x^{20} + \cdots + 60\!\cdots\!00 \)
Invariants
| Degree: | $27$ |
| |
| Signature: | $[3, 12]$ |
| |
| Discriminant: |
\(177\!\cdots\!000\)
\(\medspace = 2^{70}\cdot 3^{60}\cdot 5^{48}\)
|
| |
| Root discriminant: | \(1211.52\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{30}a^{4}-\frac{2}{15}a^{3}+\frac{1}{5}a^{2}-\frac{2}{15}a+\frac{1}{3}$, $\frac{1}{30}a^{5}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{5}a+\frac{1}{3}$, $\frac{1}{30}a^{6}+\frac{1}{3}a^{3}-\frac{1}{5}a^{2}+\frac{1}{3}$, $\frac{1}{150}a^{7}+\frac{1}{75}a^{6}-\frac{1}{75}a^{5}-\frac{1}{150}a^{4}-\frac{2}{25}a^{3}+\frac{31}{75}a^{2}+\frac{11}{25}a+\frac{4}{15}$, $\frac{1}{900}a^{8}-\frac{1}{450}a^{7}+\frac{1}{90}a^{6}-\frac{2}{225}a^{5}-\frac{2}{225}a^{4}+\frac{8}{45}a^{3}+\frac{112}{225}a^{2}+\frac{79}{225}a-\frac{13}{45}$, $\frac{1}{900}a^{9}-\frac{1}{75}a^{5}-\frac{2}{5}a^{3}-\frac{1}{15}a^{2}-\frac{9}{25}a+\frac{22}{45}$, $\frac{1}{4500}a^{10}-\frac{1}{2250}a^{9}+\frac{1}{4500}a^{8}+\frac{1}{450}a^{7}-\frac{17}{1125}a^{6}-\frac{19}{2250}a^{5}-\frac{1}{225}a^{4}+\frac{109}{1125}a^{3}+\frac{97}{1125}a^{2}-\frac{49}{125}a+\frac{14}{75}$, $\frac{1}{22500}a^{11}-\frac{1}{11250}a^{10}+\frac{1}{22500}a^{9}-\frac{1}{2250}a^{8}+\frac{8}{5625}a^{7}-\frac{59}{11250}a^{6}-\frac{14}{1125}a^{5}+\frac{43}{11250}a^{4}+\frac{317}{5625}a^{3}-\frac{2801}{5625}a^{2}+\frac{329}{1125}a+\frac{91}{225}$, $\frac{1}{135000}a^{12}+\frac{1}{11250}a^{10}+\frac{31}{67500}a^{9}-\frac{2}{5625}a^{8}+\frac{4}{5625}a^{7}+\frac{97}{11250}a^{6}-\frac{56}{5625}a^{5}+\frac{19}{2250}a^{4}+\frac{1834}{16875}a^{3}-\frac{2642}{5625}a^{2}-\frac{37}{225}a-\frac{196}{675}$, $\frac{1}{540000}a^{13}-\frac{1}{45000}a^{11}-\frac{1}{13500}a^{10}-\frac{1}{7500}a^{9}-\frac{11}{22500}a^{8}+\frac{29}{22500}a^{7}-\frac{47}{5625}a^{6}+\frac{2}{1125}a^{5}-\frac{131}{16875}a^{4}+\frac{2}{1125}a^{3}-\frac{758}{1875}a^{2}-\frac{6503}{13500}a+\frac{34}{225}$, $\frac{1}{2700000}a^{14}-\frac{1}{2700000}a^{13}+\frac{1}{135000}a^{11}+\frac{17}{337500}a^{10}+\frac{2}{5625}a^{9}+\frac{13}{56250}a^{8}+\frac{13}{7500}a^{7}-\frac{583}{56250}a^{6}-\frac{371}{33750}a^{5}+\frac{107}{33750}a^{4}-\frac{10796}{28125}a^{3}-\frac{13843}{337500}a^{2}-\frac{2653}{67500}a+\frac{28}{375}$, $\frac{1}{2700000}a^{15}-\frac{1}{2700000}a^{13}+\frac{1}{75000}a^{11}-\frac{13}{337500}a^{10}-\frac{47}{337500}a^{9}+\frac{11}{112500}a^{8}+\frac{289}{112500}a^{7}+\frac{838}{84375}a^{6}+\frac{29}{11250}a^{5}-\frac{1093}{84375}a^{4}-\frac{733}{22500}a^{3}+\frac{4106}{28125}a^{2}-\frac{2533}{67500}a-\frac{1543}{3375}$, $\frac{1}{8100000}a^{16}-\frac{1}{8100000}a^{15}-\frac{1}{1620000}a^{13}-\frac{1}{2025000}a^{12}-\frac{1}{45000}a^{11}+\frac{53}{1012500}a^{10}+\frac{29}{202500}a^{9}-\frac{37}{112500}a^{8}-\frac{113}{40500}a^{7}-\frac{1531}{101250}a^{6}-\frac{187}{28125}a^{5}+\frac{12577}{1012500}a^{4}-\frac{91313}{202500}a^{3}-\frac{22}{625}a^{2}+\frac{18787}{40500}a+\frac{412}{2025}$, $\frac{1}{2025000000}a^{17}+\frac{1}{202500000}a^{16}-\frac{13}{101250000}a^{15}+\frac{1}{12656250}a^{14}+\frac{169}{202500000}a^{13}-\frac{116}{31640625}a^{12}-\frac{97}{25312500}a^{11}+\frac{1001}{25312500}a^{10}-\frac{3829}{25312500}a^{9}-\frac{4553}{25312500}a^{8}+\frac{341861}{126562500}a^{7}-\frac{98833}{12656250}a^{6}-\frac{165811}{50625000}a^{5}-\frac{286427}{25312500}a^{4}+\frac{2955004}{6328125}a^{3}-\frac{2652991}{31640625}a^{2}+\frac{10621681}{25312500}a+\frac{86636}{1265625}$, $\frac{1}{10125000000}a^{18}+\frac{1}{10125000000}a^{17}-\frac{7}{202500000}a^{16}-\frac{1}{20250000}a^{15}+\frac{1}{40500000}a^{14}-\frac{221}{2531250000}a^{13}+\frac{1757}{1265625000}a^{12}-\frac{4577}{253125000}a^{11}+\frac{1531}{63281250}a^{10}+\frac{12127}{31640625}a^{9}+\frac{322871}{632812500}a^{8}+\frac{121273}{316406250}a^{7}+\frac{1331477}{253125000}a^{6}-\frac{608111}{50625000}a^{5}+\frac{416959}{126562500}a^{4}-\frac{13290046}{158203125}a^{3}+\frac{172718081}{632812500}a^{2}+\frac{29560733}{63281250}a+\frac{1019717}{2109375}$, $\frac{1}{50625000000}a^{19}+\frac{1}{25312500000}a^{18}+\frac{1}{50625000000}a^{17}+\frac{53}{1012500000}a^{16}-\frac{1}{10125000}a^{15}-\frac{221}{12656250000}a^{14}+\frac{15461}{25312500000}a^{13}-\frac{2107}{1582031250}a^{12}-\frac{11239}{632812500}a^{11}-\frac{2854}{31640625}a^{10}+\frac{457387}{1054687500}a^{9}+\frac{573917}{3164062500}a^{8}+\frac{15786427}{6328125000}a^{7}-\frac{8985389}{632812500}a^{6}+\frac{10972013}{1265625000}a^{5}-\frac{35058889}{3164062500}a^{4}+\frac{94832011}{1582031250}a^{3}-\frac{9548807}{1582031250}a^{2}+\frac{37929487}{210937500}a+\frac{14989876}{31640625}$, $\frac{1}{759375000000}a^{20}+\frac{1}{189843750000}a^{19}-\frac{1}{37968750000}a^{18}+\frac{59}{253125000000}a^{17}+\frac{17}{316406250}a^{16}-\frac{1547}{10546875000}a^{15}+\frac{1151}{14062500000}a^{14}+\frac{11909}{25312500000}a^{13}+\frac{18893}{31640625000}a^{12}-\frac{115633}{9492187500}a^{11}+\frac{4993861}{47460937500}a^{10}-\frac{10740011}{47460937500}a^{9}-\frac{2510447}{6328125000}a^{8}-\frac{51136831}{15820312500}a^{7}+\frac{7377137}{527343750}a^{6}-\frac{151715947}{10546875000}a^{5}+\frac{38446687}{3955078125}a^{4}+\frac{272165051}{1582031250}a^{3}+\frac{1223609977}{47460937500}a^{2}+\frac{4094659967}{9492187500}a+\frac{54949027}{474609375}$, $\frac{1}{16706250000000}a^{21}-\frac{1}{464062500000}a^{19}-\frac{67}{4176562500000}a^{18}-\frac{109}{1392187500000}a^{17}-\frac{1301}{43505859375}a^{16}-\frac{10117}{92812500000}a^{15}-\frac{109379}{696093750000}a^{14}+\frac{4078}{43505859375}a^{13}-\frac{2928923}{1044140625000}a^{12}-\frac{2129309}{174023437500}a^{11}-\frac{639211}{34804687500}a^{10}-\frac{119549867}{2088281250000}a^{9}-\frac{13082317}{43505859375}a^{8}+\frac{27790673}{43505859375}a^{7}-\frac{800538383}{58007812500}a^{6}-\frac{422211257}{34804687500}a^{5}-\frac{560233433}{87011718750}a^{4}-\frac{113614301959}{522070312500}a^{3}-\frac{2832105029}{87011718750}a^{2}+\frac{2457450553}{8701171875}a+\frac{1734115621}{5220703125}$, $\frac{1}{83531250000000}a^{22}+\frac{1}{41765625000000}a^{21}-\frac{1}{2320312500000}a^{20}-\frac{17}{4176562500000}a^{19}-\frac{97}{41765625000000}a^{18}+\frac{73}{556875000000}a^{17}-\frac{50161}{1740234375000}a^{16}-\frac{501643}{6960937500000}a^{15}-\frac{15577}{696093750000}a^{14}+\frac{4233259}{20882812500000}a^{13}-\frac{137233}{52207031250}a^{12}-\frac{642923}{870117187500}a^{11}-\frac{95242187}{10441406250000}a^{10}+\frac{21068671}{208828125000}a^{9}-\frac{102867361}{217529296875}a^{8}-\frac{136789937}{43505859375}a^{7}+\frac{5532192709}{1740234375000}a^{6}+\frac{23953201753}{1740234375000}a^{5}+\frac{3726713897}{261035156250}a^{4}+\frac{69215400203}{237304687500}a^{3}-\frac{17395910453}{435058593750}a^{2}+\frac{164348735267}{522070312500}a-\frac{6527624683}{26103515625}$, $\frac{1}{83531250000000}a^{23}-\frac{1}{1740234375000}a^{20}-\frac{37}{41765625000000}a^{19}-\frac{1891}{41765625000000}a^{18}-\frac{1543}{13921875000000}a^{17}+\frac{30223}{1392187500000}a^{16}+\frac{40069}{1740234375000}a^{15}+\frac{2341639}{20882812500000}a^{14}-\frac{576749}{773437500000}a^{13}-\frac{2531153}{870117187500}a^{12}-\frac{8550697}{696093750000}a^{11}+\frac{134815091}{2610351562500}a^{10}+\frac{322920319}{1305175781250}a^{9}-\frac{158978311}{435058593750}a^{8}-\frac{3831651041}{1740234375000}a^{7}+\frac{5778136723}{348046875000}a^{6}-\frac{26462906633}{5220703125000}a^{5}-\frac{3833351143}{290039062500}a^{4}+\frac{207647690251}{435058593750}a^{3}-\frac{223401306323}{870117187500}a^{2}+\frac{194690245741}{522070312500}a+\frac{2574527801}{26103515625}$, $\frac{1}{12\cdots 00}a^{24}-\frac{1}{261035156250000}a^{22}-\frac{67}{62\cdots 00}a^{21}+\frac{43}{696093750000000}a^{20}+\frac{4159}{10\cdots 00}a^{19}+\frac{1681}{31\cdots 00}a^{18}+\frac{1027}{17402343750000}a^{17}+\frac{2844277}{116015625000000}a^{16}+\frac{211904093}{15\cdots 00}a^{15}+\frac{3579923}{21752929687500}a^{14}-\frac{97642151}{130517578125000}a^{13}+\frac{383252773}{313242187500000}a^{12}-\frac{74641511}{5438232421875}a^{11}-\frac{7165741643}{65258789062500}a^{10}+\frac{33539645413}{783105468750000}a^{9}+\frac{6666647791}{87011718750000}a^{8}-\frac{369637043}{580078125000}a^{7}+\frac{2870954691653}{391552734375000}a^{6}+\frac{14877564106}{5438232421875}a^{5}+\frac{2120316686077}{130517578125000}a^{4}+\frac{17953710084091}{195776367187500}a^{3}+\frac{577503685039}{1812744140625}a^{2}-\frac{963897993934}{3262939453125}a+\frac{324339789682}{1957763671875}$, $\frac{1}{40\cdots 00}a^{25}+\frac{73}{16\cdots 00}a^{23}+\frac{19}{62\cdots 00}a^{22}+\frac{71}{27\cdots 00}a^{21}+\frac{337}{10\cdots 00}a^{20}+\frac{1603}{284765625000000}a^{19}+\frac{4691}{104414062500000}a^{18}-\frac{523}{87011718750000}a^{17}-\frac{1103068}{48944091796875}a^{16}+\frac{25973137}{174023437500000}a^{15}-\frac{8985247}{522070312500000}a^{14}-\frac{1113405001}{50\cdots 00}a^{13}+\frac{4023533}{21752929687500}a^{12}-\frac{30930516043}{20\cdots 00}a^{11}+\frac{40882406759}{783105468750000}a^{10}+\frac{215860006303}{522070312500000}a^{9}+\frac{923523233}{1740234375000}a^{8}-\frac{397786364323}{195776367187500}a^{7}+\frac{347646908707}{21752929687500}a^{6}-\frac{50508442537}{5932617187500}a^{5}-\frac{658003120528}{48944091796875}a^{4}+\frac{260185150087}{805664062500}a^{3}+\frac{2462776575377}{13051757812500}a^{2}-\frac{26038684356347}{250593750000000}a-\frac{181723486}{474609375}$, $\frac{1}{41\cdots 00}a^{26}+\frac{15\cdots 03}{16\cdots 00}a^{25}-\frac{20\cdots 37}{52\cdots 00}a^{24}-\frac{25\cdots 41}{18\cdots 00}a^{23}-\frac{53\cdots 49}{26\cdots 00}a^{22}+\frac{84\cdots 03}{40\cdots 00}a^{21}+\frac{22\cdots 43}{81\cdots 00}a^{20}+\frac{16\cdots 81}{20\cdots 00}a^{19}-\frac{42\cdots 61}{16\cdots 00}a^{18}-\frac{33\cdots 41}{16\cdots 00}a^{17}+\frac{45\cdots 39}{20\cdots 00}a^{16}-\frac{18\cdots 79}{63\cdots 00}a^{15}-\frac{28\cdots 57}{26\cdots 00}a^{14}+\frac{32\cdots 69}{10\cdots 00}a^{13}-\frac{42\cdots 97}{65\cdots 00}a^{12}+\frac{30\cdots 93}{25\cdots 00}a^{11}+\frac{97\cdots 81}{16\cdots 00}a^{10}-\frac{12\cdots 11}{50\cdots 00}a^{9}+\frac{10\cdots 21}{40\cdots 00}a^{8}+\frac{22\cdots 03}{25\cdots 00}a^{7}+\frac{47\cdots 49}{25\cdots 00}a^{6}+\frac{19\cdots 73}{63\cdots 00}a^{5}+\frac{35\cdots 47}{31\cdots 00}a^{4}+\frac{62\cdots 12}{39\cdots 25}a^{3}-\frac{22\cdots 71}{65\cdots 00}a^{2}-\frac{13\cdots 41}{50\cdots 00}a-\frac{32\cdots 91}{15\cdots 25}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | not computed |
| |
| Narrow class group: | not computed |
|
Unit group
| Rank: | $14$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: | not computed |
| |
| Regulator: | not computed |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{3}\cdot(2\pi)^{12}\cdot R \cdot h}{2\cdot\sqrt{177801404718372423264819198352687104000000000000000000000000000000000000000000000000}}\cr\mathstrut & \text{
Galois group
$\SO(5,3)$ (as 27T1161):
| A non-solvable group of order 51840 |
| The 25 conjugacy class representatives for $\SO(5,3)$ |
| Character table for $\SO(5,3)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 36 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.9.0.1}{9} }^{3}$ | ${\href{/padicField/11.10.0.1}{10} }{,}\,{\href{/padicField/11.5.0.1}{5} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.9.0.1}{9} }^{3}$ | ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.5.0.1}{5} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.6.0.1}{6} }^{4}{,}\,{\href{/padicField/23.3.0.1}{3} }$ | ${\href{/padicField/29.10.0.1}{10} }{,}\,{\href{/padicField/29.5.0.1}{5} }^{3}{,}\,{\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.5.0.1}{5} }^{5}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.9.0.1}{9} }^{3}$ | ${\href{/padicField/47.8.0.1}{8} }^{3}{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.5.0.1}{5} }^{3}{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 2.2.4.22a1.23 | $x^{8} + 4 x^{7} + 10 x^{6} + 16 x^{5} + 19 x^{4} + 16 x^{3} + 18 x^{2} + 20 x + 11$ | $4$ | $2$ | $22$ | $(C_8:C_2):C_2$ | $$[2, 2, 3, 4]^{2}$$ | |
| 2.2.8.48c13.729 | $x^{16} + 8 x^{15} + 40 x^{14} + 144 x^{13} + 408 x^{12} + 936 x^{11} + 1780 x^{10} + 2832 x^{9} + 3797 x^{8} + 4296 x^{7} + 4096 x^{6} + 3272 x^{5} + 2164 x^{4} + 1168 x^{3} + 500 x^{2} + 168 x + 39$ | $8$ | $2$ | $48$ | 16T41 | $$[2, 2, 3, 4]^{2}$$ | |
|
\(3\)
| Deg $27$ | $27$ | $1$ | $60$ | |||
|
\(5\)
| 5.1.2.1a1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 5.1.5.9a1.1 | $x^{5} + 5$ | $5$ | $1$ | $9$ | $F_5$ | $$[\frac{9}{4}]_{4}$$ | |
| 5.1.10.19a2.1 | $x^{10} + 5$ | $10$ | $1$ | $19$ | $F_5$ | $$[\frac{9}{4}]_{4}$$ | |
| 5.1.10.19a1.4 | $x^{10} + 75 x^{2} + 10$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $$[\frac{9}{4}]_{4}^{2}$$ |