$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(4 x + 6\right) ( x^{2} + x + 1 )^{6} + \left(4 x + 6\right) ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{3} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{2} + \left(8 x + 8\right) ( x^{2} + x + 1 ) + 8 x + 6$
|
| Base field: | $\Q_{2}$
|
| Degree $d$: | $16$ |
| Ramification index $e$: | $8$ |
| Residue field degree $f$: | $2$ |
| Discriminant exponent $c$: | $48$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $-1$ |
| $\Aut(K/\Q_{2})$:
|
$C_2^2$ |
| This field is not Galois over $\Q_{2}.$ |
| Visible Artin slopes: | $[2, 3, 4]$ |
| Visible Swan slopes: | $[1,2,3]$ |
| Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{17}{8}\rangle$ |
| Rams: | $(1, 3, 7)$ |
| Jump set: | $[1, 3, 7, 15]$ |
| Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{2} + x + 1 \)
|
| Relative Eisenstein polynomial: |
\( x^{8} + 4 t x^{6} + 8 x^{5} + 2 t x^{4} + 8 t x^{3} + \left(4 t + 4\right) x^{2} + 8 t x + 24 t + 2 \)
$\ \in\Q_{2}(t)[x]$
|