-
nf_fields • Show schema
Hide schema
{'cm': False, 'coeffs': [6066476888883200, 13476478435983360, 9381033208184832, -3861559365624000, -7902598720389120, -2532714300702720, 1878904774656000, 1167100609904640, -199955270615040, -231976756423680, 7709768294400, 28698328270080, 545341833216, -2497379088960, -91269365760, 159244507440, 5311365120, -7264733184, -147947520, 223891200, 1935360, -4446720, -9216, 54000, 0, -360, 0, 1], 'conductor': 0, 'degree': 27, 'dirichlet_group': [], 'disc_abs': 177801404718372423264819198352687104000000000000000000000000000000000000000000000000, 'disc_rad': 30, 'disc_sign': 1, 'frobs': [[2, [0]], [3, [0]], [5, [0]], [7, [[9, 3]]], [11, [[10, 1], [5, 3], [2, 1]]], [13, [[9, 3]]], [17, [[10, 1], [5, 3], [2, 1]]], [19, [[6, 2], [3, 2], [2, 4], [1, 1]]], [23, [[6, 4], [3, 1]]], [29, [[10, 1], [5, 3], [2, 1]]], [31, [[6, 2], [3, 2], [2, 4], [1, 1]]], [37, [[5, 5], [1, 2]]], [41, [[12, 1], [6, 1], [4, 2], [1, 1]]], [43, [[9, 3]]], [47, [[8, 3], [2, 1], [1, 1]]], [53, [[10, 1], [5, 3], [2, 1]]], [59, [[12, 1], [6, 1], [4, 2], [1, 1]]]], 'gal_is_abelian': False, 'gal_is_cyclic': False, 'gal_is_solvable': False, 'galois_label': '27T1161', 'galt': 1161, 'inessentialp': [2], 'is_galois': False, 'is_minimal_sibling': True, 'iso_number': 6, 'label': '27.3.177801404718372423264819198352687104000000000000000000000000000000000000000000000000.6', 'local_algs': ['2.1.1.0a1.1', '2.2.1.0a1.1', '2.2.4.22a1.23', '2.2.8.48c13.729', 'm3.27.1.60', '5.1.2.1a1.2', '5.1.5.9a1.1', '5.1.10.19a2.1', '5.1.10.19a1.4'], 'monogenic': -1, 'num_ram': 3, 'r2': 12, 'ramps': [2, 3, 5], 'rd': 1211.5209622360157, 'subfield_mults': [], 'subfields': [], 'torsion_gen': '\\( -1 \\)', 'torsion_order': 2, 'used_grh': True, 'zk': ['1', 'a', 'a^2', 'a^3', '1/30*a^4 - 2/15*a^3 + 1/5*a^2 - 2/15*a + 1/3', '1/30*a^5 - 1/3*a^3 - 1/3*a^2 - 1/5*a + 1/3', '1/30*a^6 + 1/3*a^3 - 1/5*a^2 + 1/3', '1/150*a^7 + 1/75*a^6 - 1/75*a^5 - 1/150*a^4 - 2/25*a^3 + 31/75*a^2 + 11/25*a + 4/15', '1/900*a^8 - 1/450*a^7 + 1/90*a^6 - 2/225*a^5 - 2/225*a^4 + 8/45*a^3 + 112/225*a^2 + 79/225*a - 13/45', '1/900*a^9 - 1/75*a^5 - 2/5*a^3 - 1/15*a^2 - 9/25*a + 22/45', '1/4500*a^10 - 1/2250*a^9 + 1/4500*a^8 + 1/450*a^7 - 17/1125*a^6 - 19/2250*a^5 - 1/225*a^4 + 109/1125*a^3 + 97/1125*a^2 - 49/125*a + 14/75', '1/22500*a^11 - 1/11250*a^10 + 1/22500*a^9 - 1/2250*a^8 + 8/5625*a^7 - 59/11250*a^6 - 14/1125*a^5 + 43/11250*a^4 + 317/5625*a^3 - 2801/5625*a^2 + 329/1125*a + 91/225', '1/135000*a^12 + 1/11250*a^10 + 31/67500*a^9 - 2/5625*a^8 + 4/5625*a^7 + 97/11250*a^6 - 56/5625*a^5 + 19/2250*a^4 + 1834/16875*a^3 - 2642/5625*a^2 - 37/225*a - 196/675', '1/540000*a^13 - 1/45000*a^11 - 1/13500*a^10 - 1/7500*a^9 - 11/22500*a^8 + 29/22500*a^7 - 47/5625*a^6 + 2/1125*a^5 - 131/16875*a^4 + 2/1125*a^3 - 758/1875*a^2 - 6503/13500*a + 34/225', '1/2700000*a^14 - 1/2700000*a^13 + 1/135000*a^11 + 17/337500*a^10 + 2/5625*a^9 + 13/56250*a^8 + 13/7500*a^7 - 583/56250*a^6 - 371/33750*a^5 + 107/33750*a^4 - 10796/28125*a^3 - 13843/337500*a^2 - 2653/67500*a + 28/375', '1/2700000*a^15 - 1/2700000*a^13 + 1/75000*a^11 - 13/337500*a^10 - 47/337500*a^9 + 11/112500*a^8 + 289/112500*a^7 + 838/84375*a^6 + 29/11250*a^5 - 1093/84375*a^4 - 733/22500*a^3 + 4106/28125*a^2 - 2533/67500*a - 1543/3375', '1/8100000*a^16 - 1/8100000*a^15 - 1/1620000*a^13 - 1/2025000*a^12 - 1/45000*a^11 + 53/1012500*a^10 + 29/202500*a^9 - 37/112500*a^8 - 113/40500*a^7 - 1531/101250*a^6 - 187/28125*a^5 + 12577/1012500*a^4 - 91313/202500*a^3 - 22/625*a^2 + 18787/40500*a + 412/2025', '1/2025000000*a^17 + 1/202500000*a^16 - 13/101250000*a^15 + 1/12656250*a^14 + 169/202500000*a^13 - 116/31640625*a^12 - 97/25312500*a^11 + 1001/25312500*a^10 - 3829/25312500*a^9 - 4553/25312500*a^8 + 341861/126562500*a^7 - 98833/12656250*a^6 - 165811/50625000*a^5 - 286427/25312500*a^4 + 2955004/6328125*a^3 - 2652991/31640625*a^2 + 10621681/25312500*a + 86636/1265625', '1/10125000000*a^18 + 1/10125000000*a^17 - 7/202500000*a^16 - 1/20250000*a^15 + 1/40500000*a^14 - 221/2531250000*a^13 + 1757/1265625000*a^12 - 4577/253125000*a^11 + 1531/63281250*a^10 + 12127/31640625*a^9 + 322871/632812500*a^8 + 121273/316406250*a^7 + 1331477/253125000*a^6 - 608111/50625000*a^5 + 416959/126562500*a^4 - 13290046/158203125*a^3 + 172718081/632812500*a^2 + 29560733/63281250*a + 1019717/2109375', '1/50625000000*a^19 + 1/25312500000*a^18 + 1/50625000000*a^17 + 53/1012500000*a^16 - 1/10125000*a^15 - 221/12656250000*a^14 + 15461/25312500000*a^13 - 2107/1582031250*a^12 - 11239/632812500*a^11 - 2854/31640625*a^10 + 457387/1054687500*a^9 + 573917/3164062500*a^8 + 15786427/6328125000*a^7 - 8985389/632812500*a^6 + 10972013/1265625000*a^5 - 35058889/3164062500*a^4 + 94832011/1582031250*a^3 - 9548807/1582031250*a^2 + 37929487/210937500*a + 14989876/31640625', '1/759375000000*a^20 + 1/189843750000*a^19 - 1/37968750000*a^18 + 59/253125000000*a^17 + 17/316406250*a^16 - 1547/10546875000*a^15 + 1151/14062500000*a^14 + 11909/25312500000*a^13 + 18893/31640625000*a^12 - 115633/9492187500*a^11 + 4993861/47460937500*a^10 - 10740011/47460937500*a^9 - 2510447/6328125000*a^8 - 51136831/15820312500*a^7 + 7377137/527343750*a^6 - 151715947/10546875000*a^5 + 38446687/3955078125*a^4 + 272165051/1582031250*a^3 + 1223609977/47460937500*a^2 + 4094659967/9492187500*a + 54949027/474609375', '1/16706250000000*a^21 - 1/464062500000*a^19 - 67/4176562500000*a^18 - 109/1392187500000*a^17 - 1301/43505859375*a^16 - 10117/92812500000*a^15 - 109379/696093750000*a^14 + 4078/43505859375*a^13 - 2928923/1044140625000*a^12 - 2129309/174023437500*a^11 - 639211/34804687500*a^10 - 119549867/2088281250000*a^9 - 13082317/43505859375*a^8 + 27790673/43505859375*a^7 - 800538383/58007812500*a^6 - 422211257/34804687500*a^5 - 560233433/87011718750*a^4 - 113614301959/522070312500*a^3 - 2832105029/87011718750*a^2 + 2457450553/8701171875*a + 1734115621/5220703125', '1/83531250000000*a^22 + 1/41765625000000*a^21 - 1/2320312500000*a^20 - 17/4176562500000*a^19 - 97/41765625000000*a^18 + 73/556875000000*a^17 - 50161/1740234375000*a^16 - 501643/6960937500000*a^15 - 15577/696093750000*a^14 + 4233259/20882812500000*a^13 - 137233/52207031250*a^12 - 642923/870117187500*a^11 - 95242187/10441406250000*a^10 + 21068671/208828125000*a^9 - 102867361/217529296875*a^8 - 136789937/43505859375*a^7 + 5532192709/1740234375000*a^6 + 23953201753/1740234375000*a^5 + 3726713897/261035156250*a^4 + 69215400203/237304687500*a^3 - 17395910453/435058593750*a^2 + 164348735267/522070312500*a - 6527624683/26103515625', '1/83531250000000*a^23 - 1/1740234375000*a^20 - 37/41765625000000*a^19 - 1891/41765625000000*a^18 - 1543/13921875000000*a^17 + 30223/1392187500000*a^16 + 40069/1740234375000*a^15 + 2341639/20882812500000*a^14 - 576749/773437500000*a^13 - 2531153/870117187500*a^12 - 8550697/696093750000*a^11 + 134815091/2610351562500*a^10 + 322920319/1305175781250*a^9 - 158978311/435058593750*a^8 - 3831651041/1740234375000*a^7 + 5778136723/348046875000*a^6 - 26462906633/5220703125000*a^5 - 3833351143/290039062500*a^4 + 207647690251/435058593750*a^3 - 223401306323/870117187500*a^2 + 194690245741/522070312500*a + 2574527801/26103515625', '1/12529687500000000*a^24 - 1/261035156250000*a^22 - 67/6264843750000000*a^21 + 43/696093750000000*a^20 + 4159/1044140625000000*a^19 + 1681/3132421875000000*a^18 + 1027/17402343750000*a^17 + 2844277/116015625000000*a^16 + 211904093/1566210937500000*a^15 + 3579923/21752929687500*a^14 - 97642151/130517578125000*a^13 + 383252773/313242187500000*a^12 - 74641511/5438232421875*a^11 - 7165741643/65258789062500*a^10 + 33539645413/783105468750000*a^9 + 6666647791/87011718750000*a^8 - 369637043/580078125000*a^7 + 2870954691653/391552734375000*a^6 + 14877564106/5438232421875*a^5 + 2120316686077/130517578125000*a^4 + 17953710084091/195776367187500*a^3 + 577503685039/1812744140625*a^2 - 963897993934/3262939453125*a + 324339789682/1957763671875', '1/400950000000000000*a^25 + 73/16706250000000000*a^23 + 19/6264843750000000*a^22 + 71/2784375000000000*a^21 + 337/1044140625000000*a^20 + 1603/284765625000000*a^19 + 4691/104414062500000*a^18 - 523/87011718750000*a^17 - 1103068/48944091796875*a^16 + 25973137/174023437500000*a^15 - 8985247/522070312500000*a^14 - 1113405001/5011875000000000*a^13 + 4023533/21752929687500*a^12 - 30930516043/2088281250000000*a^11 + 40882406759/783105468750000*a^10 + 215860006303/522070312500000*a^9 + 923523233/1740234375000*a^8 - 397786364323/195776367187500*a^7 + 347646908707/21752929687500*a^6 - 50508442537/5932617187500*a^5 - 658003120528/48944091796875*a^4 + 260185150087/805664062500*a^3 + 2462776575377/13051757812500*a^2 - 26038684356347/250593750000000*a - 181723486/474609375', '1/41736716675453613308627168616096000000000000000*a^26 + 156455594275124490141633503/163034049513490676986824877406625000000000000*a^25 - 204700295286390332851312827437/5217089584431701663578396077012000000000000000*a^24 - 2586029022433490440641121241/1852659653562394056668464515984375000000000*a^23 - 5370221188234833143443555005649/2608544792215850831789198038506000000000000000*a^22 + 841385270665280667456020439203/40758512378372669246706219351656250000000000*a^21 + 22055364715318459314020363187443/81517024756745338493412438703312500000000000*a^20 + 165239287244314500127407181462681/20379256189186334623353109675828125000000000*a^19 - 4242648973756373551050136014990961/163034049513490676986824877406625000000000000*a^18 - 3319663334947736946131739350641/16759256734528235709994333614990234375000*a^17 + 457870669923813375929827781202706639/20379256189186334623353109675828125000000000*a^16 - 18249066816096899574330518799238879/636851755912072956979784677369628906250000*a^15 - 283234682862976599034064109556339982957/2608544792215850831789198038506000000000000000*a^14 + 321880205351471320158006014472798869/10189628094593167311676554837914062500000000*a^13 - 420619635129826112459460728844313931497/652136198053962707947299509626500000000000000*a^12 + 30796773218459269118501684936063157793/2547407023648291827919138709478515625000000*a^11 + 9726879539807233432621091280825071054981/163034049513490676986824877406625000000000000*a^10 - 1297777583867635694898715826622895734911/5094814047296583655838277418957031250000000*a^9 + 10076723913276113153507180011163709568021/40758512378372669246706219351656250000000000*a^8 + 2236659192345825202828528417268374634903/2547407023648291827919138709478515625000000*a^7 + 471152934156465601257874915948526608349/2547407023648291827919138709478515625000000*a^6 + 1991592724707226968707273169383009508973/636851755912072956979784677369628906250000*a^5 + 3528315107475709358557154946766193208247/318425877956036478489892338684814453125000*a^4 + 6207901208561792121602958725153163617612/39803234744504559811236542335601806640625*a^3 - 227150741046849827253610235847347209786794371/652136198053962707947299509626500000000000000*a^2 - 134550951229909136185560522612285450580841/509481404729658365583827741895703125000000*a - 329868272178854998883197304428824786391/1592129389780182392449461693424072265625']}