Properties

Label 5.1.10.19a2.1
Base \(\Q_{5}\)
Degree \(10\)
e \(10\)
f \(1\)
c \(19\)
Galois group $F_5$ (as 10T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{10} + 5\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $10$
Ramification index $e$: $10$
Residue field degree $f$: $1$
Discriminant exponent $c$: $19$
Discriminant root field: $\Q_{5}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{5})$: $C_2$
This field is not Galois over $\Q_{5}.$
Visible Artin slopes:$[\frac{9}{4}]$
Visible Swan slopes:$[\frac{5}{4}]$
Means:$\langle1\rangle$
Rams:$(\frac{5}{2})$
Jump set:undefined
Roots of unity:$4 = (5 - 1)$

Intermediate fields

$\Q_{5}(\sqrt{5})$, 5.1.5.9a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial: \( x^{10} + 5 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^5 + 2$,$2 z^2 + 3$
Associated inertia:$1$,$1$
Indices of inseparability:$[10, 0]$

Invariants of the Galois closure

Galois degree: $20$
Galois group: $F_5$ (as 10T4)
Inertia group: $F_5$ (as 10T4)
Wild inertia group: $C_5$
Galois unramified degree: $1$
Galois tame degree: $4$
Galois Artin slopes: $[\frac{9}{4}]$
Galois Swan slopes: $[\frac{5}{4}]$
Galois mean slope: $1.95$
Galois splitting model:$x^{10} - 5$