Group action invariants
| Degree $n$ : | $10$ | |
| Transitive number $t$ : | $4$ | |
| Group : | $F_5$ | |
| CHM label : | $1/2[F(5)]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,5,7,9)(2,4,6,8,10), (1,2,9,8)(3,6,7,4)(5,10) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: $F_5$
Low degree siblings
5T3, 20T5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1 $ | $5$ | $2$ | $( 2,10)( 3, 9)( 4, 8)( 5, 7)$ |
| $ 4, 4, 2 $ | $5$ | $4$ | $( 1, 2, 5, 4)( 3, 8)( 6, 7,10, 9)$ |
| $ 4, 4, 2 $ | $5$ | $4$ | $( 1, 2, 9, 8)( 3, 6, 7, 4)( 5,10)$ |
| $ 5, 5 $ | $4$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$ |
Group invariants
| Order: | $20=2^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [20, 3] |
| Character table: |
2 2 2 2 2 .
5 1 . . . 1
1a 2a 4a 4b 5a
2P 1a 1a 2a 2a 5a
3P 1a 2a 4b 4a 5a
5P 1a 2a 4a 4b 1a
X.1 1 1 1 1 1
X.2 1 1 -1 -1 1
X.3 1 -1 A -A 1
X.4 1 -1 -A A 1
X.5 4 . . . -1
A = -E(4)
= -Sqrt(-1) = -i
|