Show commands: Magma
Group invariants
| Abstract group: | $F_5$ |
| |
| Order: | $20=2^{2} \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $10$ |
| |
| Transitive number $t$: | $4$ |
| |
| CHM label: | $1/2[F(5)]2$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,3,5,7,9)(2,4,6,8,10)$, $(1,2,9,8)(3,6,7,4)(5,10)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: $F_5$
Low degree siblings
5T3, 20T5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{10}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{4},1^{2}$ | $5$ | $2$ | $4$ | $( 1, 5)( 2, 4)( 6,10)( 7, 9)$ |
| 4A1 | $4^{2},2$ | $5$ | $4$ | $7$ | $( 1, 4, 5, 2)( 3, 8)( 6, 9,10, 7)$ |
| 4A-1 | $4^{2},2$ | $5$ | $4$ | $7$ | $( 1, 2, 5, 4)( 3, 8)( 6, 7,10, 9)$ |
| 5A | $5^{2}$ | $4$ | $5$ | $8$ | $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$ |
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 2A | 4A1 | 4A-1 | 5A | ||
| Size | 1 | 5 | 5 | 5 | 4 | |
| 2 P | 1A | 1A | 2A | 2A | 5A | |
| 5 P | 1A | 2A | 4A1 | 4A-1 | 1A | |
| Type | ||||||
| 20.3.1a | R | |||||
| 20.3.1b | R | |||||
| 20.3.1c1 | C | |||||
| 20.3.1c2 | C | |||||
| 20.3.4a | R |
Regular extensions
| $f_{ 1 } =$ |
$x^{10} - 5 x^{9} + \left(-t^{2} + t + 17\right) x^{8} + \left(4 t^{2} - 4 t - 38\right) x^{7} + \left(-8 t^{2} + 3 t + 66\right) x^{6} + \left(10 t^{2} + 5 t - 86\right) x^{5} + \left(-9 t^{2} - 9 t + 69\right) x^{4} + \left(6 t^{2} + 5 t - 29\right) x^{3} + \left(-2 t^{2} - 3 t + 4\right) x^{2} + \left(2 t + 1\right) x - 1$
|