Normalized defining polynomial
\( x^{21} + 4x - 8 \)
Invariants
| Degree: | $21$ |
| |
| Signature: | $[1, 10]$ |
| |
| Discriminant: |
\(1568357617874304002134971883743870976\)
\(\medspace = 2^{28}\cdot 23\cdot 9257\cdot 126173\cdot 217490699493582407\)
|
| |
| Root discriminant: | \(52.92\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(23\), \(9257\), \(126173\), \(217490699493582407\)
|
| |
| Discriminant root field: | $\Q(\sqrt{58425\!\cdots\!24421}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2}a^{10}$, $\frac{1}{2}a^{11}$, $\frac{1}{2}a^{12}$, $\frac{1}{2}a^{13}$, $\frac{1}{2}a^{14}$, $\frac{1}{2}a^{15}$, $\frac{1}{4}a^{16}-\frac{1}{2}a^{6}$, $\frac{1}{4}a^{17}-\frac{1}{2}a^{7}$, $\frac{1}{4}a^{18}-\frac{1}{2}a^{8}$, $\frac{1}{4}a^{19}-\frac{1}{2}a^{9}$, $\frac{1}{4}a^{20}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $10$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{4}a^{16}-\frac{1}{2}a^{6}-a+1$, $\frac{1}{4}a^{16}-\frac{1}{2}a^{6}+a-1$, $\frac{1}{4}a^{20}-\frac{1}{2}a^{18}-\frac{1}{4}a^{16}-\frac{1}{2}a^{15}+\frac{1}{2}a^{12}-\frac{3}{2}a^{10}+\frac{1}{2}a^{6}-a^{5}+a^{4}-3a^{2}+1$, $\frac{1}{4}a^{20}-\frac{1}{2}a^{19}+\frac{3}{4}a^{17}-\frac{1}{4}a^{16}+\frac{3}{2}a^{15}+a^{14}+\frac{1}{2}a^{13}+\frac{5}{2}a^{12}+\frac{3}{2}a^{10}+2a^{9}-a^{8}+\frac{5}{2}a^{7}-\frac{1}{2}a^{6}-2a^{5}+2a^{4}-5a^{3}-5$, $\frac{1}{4}a^{20}-\frac{1}{4}a^{19}+\frac{3}{4}a^{18}-\frac{1}{2}a^{17}-\frac{1}{2}a^{16}-\frac{1}{2}a^{14}-\frac{3}{2}a^{12}+\frac{3}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}+\frac{3}{2}a^{8}+a^{6}-3a^{5}+2a^{4}-2a^{3}-3a^{2}+a+1$, $\frac{1}{4}a^{20}-\frac{1}{2}a^{19}+\frac{3}{4}a^{18}-a^{17}+\frac{3}{2}a^{15}-2a^{14}+\frac{1}{2}a^{13}+\frac{3}{2}a^{12}-2a^{11}+\frac{3}{2}a^{10}-a^{9}+\frac{1}{2}a^{8}+2a^{7}-5a^{6}+5a^{5}-6a^{3}+7a^{2}-3a-1$, $\frac{1}{2}a^{19}-\frac{3}{4}a^{17}+a^{15}+\frac{1}{2}a^{14}+\frac{1}{2}a^{12}-a^{10}+a^{8}-\frac{1}{2}a^{7}-a^{6}+a^{5}-3a^{3}-a^{2}+2a-1$, $\frac{1}{4}a^{20}+\frac{1}{4}a^{19}-\frac{1}{4}a^{18}-\frac{1}{2}a^{17}-\frac{1}{2}a^{16}-\frac{1}{2}a^{15}+\frac{1}{2}a^{13}-\frac{1}{2}a^{10}-\frac{3}{2}a^{9}-\frac{1}{2}a^{8}+a^{5}+a^{4}-2a^{3}-2a^{2}-1$, $\frac{1}{4}a^{20}-\frac{1}{4}a^{18}+\frac{1}{4}a^{16}-\frac{1}{2}a^{14}+a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{10}+a^{9}-\frac{1}{2}a^{8}-a^{7}+\frac{3}{2}a^{6}-a^{5}-a^{3}+3a^{2}-2a-1$, $\frac{1}{4}a^{20}+\frac{1}{2}a^{19}-\frac{3}{4}a^{17}+\frac{1}{2}a^{16}+\frac{1}{2}a^{15}-\frac{3}{2}a^{14}+a^{13}+\frac{3}{2}a^{12}-2a^{11}-\frac{1}{2}a^{10}+a^{9}+a^{8}-\frac{1}{2}a^{7}-2a^{6}+3a^{5}-a^{4}-4a^{3}+6a^{2}+a-5$
|
| |
| Regulator: | \( 15652649356.7 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{10}\cdot 15652649356.7 \cdot 1}{2\cdot\sqrt{1568357617874304002134971883743870976}}\cr\approx \mathstrut & 1.19857162283 \end{aligned}\] (assuming GRH)
Galois group
| A non-solvable group of order 51090942171709440000 |
| The 792 conjugacy class representatives for $S_{21}$ |
| Character table for $S_{21}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 42 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $17{,}\,{\href{/padicField/3.3.0.1}{3} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | $21$ | ${\href{/padicField/7.14.0.1}{14} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | $18{,}\,{\href{/padicField/17.3.0.1}{3} }$ | $15{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/29.11.0.1}{11} }{,}\,{\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.9.0.1}{9} }{,}\,{\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.9.0.1}{9} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }$ | ${\href{/padicField/47.11.0.1}{11} }{,}\,{\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.11.0.1}{11} }{,}\,{\href{/padicField/53.10.0.1}{10} }$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 2.1.20.28a1.5 | $x^{20} + 2 x^{10} + 2 x^{9} + 2$ | $20$ | $1$ | $28$ | 20T80 | not computed | |
|
\(23\)
| $\Q_{23}$ | $x + 18$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 23.1.2.1a1.2 | $x^{2} + 115$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 23.2.1.0a1.1 | $x^{2} + 21 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 23.16.1.0a1.1 | $x^{16} + 19 x^{7} + 19 x^{6} + 16 x^{5} + 13 x^{4} + x^{3} + 14 x^{2} + 17 x + 5$ | $1$ | $16$ | $0$ | $C_{16}$ | $$[\ ]^{16}$$ | |
|
\(9257\)
| $\Q_{9257}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{9257}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
| Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ | ||
|
\(126173\)
| $\Q_{126173}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{126173}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{126173}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
|
\(217490699493582407\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
| Deg $11$ | $1$ | $11$ | $0$ | $C_{11}$ | $$[\ ]^{11}$$ |