Properties

Label 2.1.20.28a1.5
Base \(\Q_{2}\)
Degree \(20\)
e \(20\)
f \(1\)
c \(28\)
Galois group $C_2^4:F_5$ (as 20T80)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{20} + 2 x^{10} + 2 x^{9} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $20$
Ramification index $e$: $20$
Residue field degree $f$: $1$
Discriminant exponent $c$: $28$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{8}{5}, \frac{8}{5}]$
Visible Swan slopes:$[\frac{3}{5},\frac{3}{5}]$
Means:$\langle\frac{3}{10}, \frac{9}{20}\rangle$
Rams:$(3, 3)$
Jump set:$[5, 10, 29]$
Roots of unity:$2$

Intermediate fields

2.1.5.4a1.1, 2.1.10.12a1.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{20} + 2 x^{10} + 2 x^{9} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{16} + z^{12} + 1$,$z^3 + 1$
Associated inertia:$4$,$2$
Indices of inseparability:$[9, 9, 0]$

Invariants of the Galois closure

Galois degree: $320$
Galois group: $C_2^4:F_5$ (as 20T80)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed