Normalized defining polynomial
\( x^{20} - 8 x^{19} - 156 x^{18} - 952 x^{17} + 17527 x^{16} + 241902 x^{15} - 1136451 x^{14} + \cdots + 53\!\cdots\!81 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[4, 8]$ |
| |
| Discriminant: |
\(10818327022517881605935827576487172209050638458251953125\)
\(\medspace = 5^{15}\cdot 11^{18}\cdot 41^{16}\)
|
| |
| Root discriminant: | \(564.56\) |
| |
| Galois root discriminant: | $5^{3/4}11^{9/10}41^{4/5}\approx 564.557271214292$ | ||
| Ramified primes: |
\(5\), \(11\), \(41\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{10}a^{12}+\frac{1}{5}a^{10}-\frac{1}{2}a^{9}-\frac{1}{10}a^{8}+\frac{1}{10}a^{6}-\frac{1}{10}a^{4}-\frac{1}{2}a^{3}-\frac{3}{10}a^{2}-\frac{1}{2}a-\frac{2}{5}$, $\frac{1}{20}a^{13}-\frac{1}{20}a^{12}-\frac{3}{20}a^{11}+\frac{3}{20}a^{10}+\frac{1}{5}a^{9}+\frac{3}{10}a^{8}-\frac{1}{5}a^{7}+\frac{9}{20}a^{6}-\frac{3}{10}a^{5}+\frac{3}{10}a^{4}-\frac{3}{20}a^{3}+\frac{3}{20}a^{2}+\frac{3}{10}a-\frac{1}{20}$, $\frac{1}{20}a^{14}-\frac{1}{4}a^{10}-\frac{1}{2}a^{9}-\frac{1}{10}a^{8}+\frac{1}{4}a^{7}+\frac{7}{20}a^{6}-\frac{1}{20}a^{4}-\frac{3}{20}a^{2}+\frac{1}{4}a+\frac{3}{20}$, $\frac{1}{20}a^{15}-\frac{1}{4}a^{11}-\frac{1}{2}a^{10}-\frac{1}{10}a^{9}+\frac{1}{4}a^{8}+\frac{7}{20}a^{7}-\frac{1}{20}a^{5}-\frac{3}{20}a^{3}+\frac{1}{4}a^{2}+\frac{3}{20}a$, $\frac{1}{80}a^{16}+\frac{1}{80}a^{15}-\frac{1}{80}a^{14}-\frac{1}{40}a^{13}+\frac{1}{80}a^{12}-\frac{9}{80}a^{11}-\frac{1}{16}a^{10}-\frac{7}{16}a^{9}-\frac{11}{40}a^{8}+\frac{3}{8}a^{7}+\frac{9}{40}a^{6}+\frac{11}{80}a^{5}+\frac{11}{40}a^{4}-\frac{2}{5}a^{3}+\frac{13}{80}a^{2}+\frac{13}{40}a-\frac{17}{80}$, $\frac{1}{80}a^{17}-\frac{1}{40}a^{15}-\frac{1}{80}a^{14}-\frac{1}{80}a^{13}+\frac{1}{40}a^{12}+\frac{1}{5}a^{11}-\frac{13}{40}a^{10}+\frac{37}{80}a^{9}+\frac{1}{4}a^{8}+\frac{1}{20}a^{7}-\frac{7}{16}a^{6}+\frac{7}{16}a^{5}-\frac{3}{40}a^{4}+\frac{17}{80}a^{3}-\frac{23}{80}a^{2}-\frac{27}{80}a-\frac{11}{80}$, $\frac{1}{22800}a^{18}+\frac{91}{22800}a^{17}+\frac{119}{22800}a^{16}+\frac{7}{2280}a^{15}-\frac{289}{22800}a^{14}+\frac{341}{22800}a^{13}-\frac{1001}{22800}a^{12}+\frac{1109}{4560}a^{11}-\frac{1739}{3800}a^{10}-\frac{41}{950}a^{9}+\frac{289}{3800}a^{8}-\frac{265}{912}a^{7}-\frac{203}{2850}a^{6}+\frac{4513}{11400}a^{5}-\frac{717}{7600}a^{4}+\frac{203}{570}a^{3}+\frac{567}{7600}a^{2}+\frac{257}{600}a-\frac{4103}{11400}$, $\frac{1}{30\cdots 00}a^{19}+\frac{59\cdots 17}{30\cdots 00}a^{18}+\frac{81\cdots 03}{20\cdots 20}a^{17}-\frac{60\cdots 77}{10\cdots 00}a^{16}+\frac{56\cdots 71}{32\cdots 50}a^{15}+\frac{30\cdots 41}{15\cdots 00}a^{14}+\frac{50\cdots 01}{20\cdots 20}a^{13}-\frac{22\cdots 29}{77\cdots 00}a^{12}-\frac{71\cdots 09}{30\cdots 00}a^{11}-\frac{17\cdots 91}{10\cdots 00}a^{10}-\frac{18\cdots 47}{41\cdots 64}a^{9}-\frac{46\cdots 31}{30\cdots 00}a^{8}-\frac{10\cdots 33}{38\cdots 00}a^{7}-\frac{47\cdots 41}{38\cdots 00}a^{6}+\frac{13\cdots 73}{15\cdots 40}a^{5}+\frac{92\cdots 23}{38\cdots 00}a^{4}+\frac{69\cdots 21}{30\cdots 00}a^{3}+\frac{14\cdots 97}{30\cdots 00}a^{2}+\frac{54\cdots 51}{12\cdots 20}a-\frac{24\cdots 69}{10\cdots 00}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{5}\times C_{5}\times C_{5}$, which has order $125$ (assuming GRH) |
| |
| Narrow class group: | $C_{10}\times C_{10}\times C_{5}$, which has order $500$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{17\cdots 21}{24\cdots 20}a^{19}-\frac{76\cdots 43}{24\cdots 20}a^{18}-\frac{26\cdots 07}{24\cdots 20}a^{17}-\frac{30\cdots 47}{24\cdots 20}a^{16}+\frac{46\cdots 73}{61\cdots 80}a^{15}+\frac{24\cdots 31}{12\cdots 88}a^{14}+\frac{22\cdots 19}{24\cdots 20}a^{13}-\frac{40\cdots 93}{30\cdots 40}a^{12}-\frac{11\cdots 97}{24\cdots 20}a^{11}+\frac{37\cdots 57}{12\cdots 80}a^{10}-\frac{24\cdots 21}{49\cdots 44}a^{9}+\frac{14\cdots 51}{12\cdots 80}a^{8}+\frac{47\cdots 43}{30\cdots 40}a^{7}-\frac{47\cdots 31}{61\cdots 80}a^{6}-\frac{18\cdots 71}{61\cdots 80}a^{5}-\frac{33\cdots 92}{38\cdots 55}a^{4}-\frac{47\cdots 19}{49\cdots 44}a^{3}-\frac{62\cdots 11}{24\cdots 20}a^{2}-\frac{30\cdots 97}{61\cdots 80}a+\frac{74\cdots 15}{49\cdots 44}$, $\frac{28\cdots 73}{38\cdots 00}a^{19}-\frac{12\cdots 89}{11\cdots 00}a^{18}-\frac{91\cdots 57}{11\cdots 00}a^{17}+\frac{42\cdots 13}{11\cdots 00}a^{16}+\frac{99\cdots 17}{57\cdots 00}a^{15}+\frac{14\cdots 91}{15\cdots 00}a^{14}-\frac{22\cdots 47}{11\cdots 00}a^{13}-\frac{59\cdots 61}{57\cdots 00}a^{12}+\frac{14\cdots 99}{11\cdots 00}a^{11}+\frac{16\cdots 43}{20\cdots 00}a^{10}-\frac{31\cdots 19}{38\cdots 00}a^{9}+\frac{15\cdots 59}{20\cdots 00}a^{8}-\frac{18\cdots 49}{28\cdots 00}a^{7}-\frac{10\cdots 31}{28\cdots 00}a^{6}-\frac{34\cdots 71}{57\cdots 00}a^{5}+\frac{15\cdots 59}{95\cdots 00}a^{4}-\frac{79\cdots 41}{11\cdots 00}a^{3}+\frac{16\cdots 47}{38\cdots 00}a^{2}-\frac{66\cdots 53}{28\cdots 00}a-\frac{51\cdots 57}{11\cdots 00}$, $\frac{74\cdots 63}{11\cdots 00}a^{19}-\frac{27\cdots 31}{38\cdots 00}a^{18}-\frac{96\cdots 39}{11\cdots 00}a^{17}-\frac{34\cdots 69}{11\cdots 00}a^{16}+\frac{36\cdots 77}{28\cdots 00}a^{15}+\frac{73\cdots 23}{62\cdots 25}a^{14}-\frac{13\cdots 29}{11\cdots 00}a^{13}-\frac{10\cdots 17}{95\cdots 00}a^{12}+\frac{78\cdots 53}{11\cdots 00}a^{11}+\frac{13\cdots 01}{20\cdots 00}a^{10}-\frac{25\cdots 03}{38\cdots 00}a^{9}+\frac{30\cdots 29}{60\cdots 00}a^{8}+\frac{21\cdots 69}{95\cdots 00}a^{7}-\frac{52\cdots 93}{19\cdots 00}a^{6}-\frac{62\cdots 07}{57\cdots 00}a^{5}+\frac{10\cdots 47}{14\cdots 00}a^{4}-\frac{79\cdots 47}{11\cdots 00}a^{3}+\frac{23\cdots 57}{11\cdots 00}a^{2}-\frac{15\cdots 07}{57\cdots 00}a-\frac{36\cdots 69}{11\cdots 00}$, $\frac{15\cdots 01}{16\cdots 00}a^{19}-\frac{12\cdots 51}{16\cdots 00}a^{18}-\frac{25\cdots 73}{16\cdots 00}a^{17}-\frac{21\cdots 33}{16\cdots 00}a^{16}+\frac{18\cdots 53}{84\cdots 00}a^{15}+\frac{26\cdots 57}{84\cdots 00}a^{14}-\frac{21\cdots 43}{16\cdots 00}a^{13}-\frac{27\cdots 09}{84\cdots 00}a^{12}-\frac{38\cdots 33}{56\cdots 00}a^{11}+\frac{10\cdots 23}{56\cdots 00}a^{10}+\frac{12\cdots 71}{29\cdots 00}a^{9}-\frac{66\cdots 03}{16\cdots 00}a^{8}-\frac{16\cdots 01}{42\cdots 00}a^{7}-\frac{67\cdots 73}{84\cdots 00}a^{6}-\frac{14\cdots 79}{14\cdots 00}a^{5}+\frac{77\cdots 59}{21\cdots 00}a^{4}+\frac{82\cdots 77}{56\cdots 00}a^{3}+\frac{58\cdots 69}{16\cdots 00}a^{2}+\frac{77\cdots 91}{84\cdots 00}a+\frac{52\cdots 21}{19\cdots 00}$, $\frac{31\cdots 51}{33\cdots 00}a^{19}-\frac{50\cdots 61}{33\cdots 00}a^{18}-\frac{15\cdots 71}{11\cdots 00}a^{17}+\frac{11\cdots 51}{59\cdots 00}a^{16}+\frac{12\cdots 53}{28\cdots 00}a^{15}+\frac{22\cdots 37}{16\cdots 00}a^{14}-\frac{52\cdots 01}{11\cdots 00}a^{13}-\frac{15\cdots 51}{42\cdots 00}a^{12}+\frac{10\cdots 61}{33\cdots 00}a^{11}+\frac{47\cdots 83}{11\cdots 00}a^{10}-\frac{20\cdots 61}{11\cdots 00}a^{9}-\frac{49\cdots 73}{33\cdots 00}a^{8}+\frac{44\cdots 17}{42\cdots 00}a^{7}+\frac{19\cdots 13}{42\cdots 00}a^{6}-\frac{35\cdots 81}{42\cdots 00}a^{5}+\frac{99\cdots 09}{42\cdots 00}a^{4}-\frac{12\cdots 49}{33\cdots 00}a^{3}-\frac{49\cdots 61}{33\cdots 00}a^{2}-\frac{22\cdots 81}{70\cdots 00}a-\frac{14\cdots 07}{11\cdots 00}$, $\frac{11\cdots 81}{11\cdots 00}a^{19}-\frac{50\cdots 43}{11\cdots 00}a^{18}-\frac{45\cdots 19}{22\cdots 20}a^{17}-\frac{16\cdots 71}{11\cdots 00}a^{16}+\frac{23\cdots 27}{14\cdots 00}a^{15}+\frac{18\cdots 11}{56\cdots 00}a^{14}-\frac{12\cdots 89}{22\cdots 20}a^{13}-\frac{82\cdots 29}{28\cdots 00}a^{12}-\frac{25\cdots 69}{11\cdots 00}a^{11}+\frac{87\cdots 47}{11\cdots 00}a^{10}-\frac{10\cdots 03}{11\cdots 80}a^{9}+\frac{11\cdots 89}{11\cdots 00}a^{8}+\frac{37\cdots 21}{70\cdots 00}a^{7}-\frac{94\cdots 87}{28\cdots 00}a^{6}-\frac{13\cdots 37}{28\cdots 40}a^{5}-\frac{44\cdots 87}{14\cdots 00}a^{4}-\frac{24\cdots 99}{11\cdots 00}a^{3}-\frac{21\cdots 83}{11\cdots 00}a^{2}+\frac{11\cdots 67}{56\cdots 80}a+\frac{20\cdots 31}{38\cdots 00}$, $\frac{63\cdots 41}{61\cdots 60}a^{19}-\frac{33\cdots 01}{41\cdots 64}a^{18}-\frac{20\cdots 43}{12\cdots 92}a^{17}-\frac{58\cdots 71}{61\cdots 60}a^{16}+\frac{28\cdots 63}{15\cdots 40}a^{15}+\frac{26\cdots 09}{10\cdots 60}a^{14}-\frac{76\cdots 89}{61\cdots 60}a^{13}-\frac{11\cdots 73}{51\cdots 80}a^{12}+\frac{12\cdots 97}{32\cdots 40}a^{11}+\frac{18\cdots 25}{41\cdots 64}a^{10}-\frac{18\cdots 91}{20\cdots 20}a^{9}+\frac{29\cdots 41}{61\cdots 60}a^{8}+\frac{12\cdots 87}{51\cdots 80}a^{7}-\frac{19\cdots 01}{51\cdots 80}a^{6}-\frac{49\cdots 73}{15\cdots 40}a^{5}+\frac{11\cdots 57}{30\cdots 48}a^{4}-\frac{74\cdots 91}{12\cdots 92}a^{3}+\frac{12\cdots 53}{61\cdots 60}a^{2}+\frac{18\cdots 81}{15\cdots 40}a+\frac{11\cdots 59}{21\cdots 40}$, $\frac{10\cdots 53}{25\cdots 00}a^{19}+\frac{13\cdots 59}{19\cdots 00}a^{18}-\frac{51\cdots 57}{77\cdots 00}a^{17}-\frac{52\cdots 17}{48\cdots 75}a^{16}-\frac{80\cdots 33}{38\cdots 00}a^{15}+\frac{43\cdots 13}{38\cdots 00}a^{14}+\frac{65\cdots 73}{77\cdots 00}a^{13}-\frac{17\cdots 77}{77\cdots 00}a^{12}-\frac{19\cdots 06}{48\cdots 75}a^{11}-\frac{90\cdots 63}{25\cdots 00}a^{10}-\frac{38\cdots 31}{64\cdots 00}a^{9}-\frac{66\cdots 49}{25\cdots 00}a^{8}+\frac{35\cdots 59}{77\cdots 00}a^{7}+\frac{55\cdots 01}{77\cdots 00}a^{6}+\frac{88\cdots 03}{77\cdots 00}a^{5}+\frac{68\cdots 61}{25\cdots 00}a^{4}-\frac{79\cdots 79}{19\cdots 00}a^{3}-\frac{43\cdots 43}{25\cdots 00}a^{2}-\frac{30\cdots 37}{77\cdots 00}a-\frac{18\cdots 29}{13\cdots 00}$, $\frac{57\cdots 87}{30\cdots 00}a^{19}+\frac{16\cdots 21}{10\cdots 00}a^{18}+\frac{48\cdots 59}{30\cdots 00}a^{17}-\frac{29\cdots 21}{30\cdots 00}a^{16}-\frac{90\cdots 23}{19\cdots 00}a^{15}-\frac{27\cdots 27}{51\cdots 00}a^{14}-\frac{73\cdots 91}{30\cdots 00}a^{13}-\frac{18\cdots 21}{32\cdots 50}a^{12}-\frac{38\cdots 83}{30\cdots 00}a^{11}-\frac{13\cdots 49}{10\cdots 00}a^{10}-\frac{10\cdots 37}{10\cdots 00}a^{9}-\frac{47\cdots 01}{30\cdots 00}a^{8}-\frac{30\cdots 99}{25\cdots 00}a^{7}-\frac{11\cdots 51}{25\cdots 00}a^{6}-\frac{88\cdots 01}{19\cdots 00}a^{5}-\frac{45\cdots 89}{77\cdots 00}a^{4}+\frac{16\cdots 47}{30\cdots 00}a^{3}+\frac{46\cdots 43}{30\cdots 00}a^{2}+\frac{25\cdots 91}{77\cdots 00}a+\frac{69\cdots 21}{10\cdots 00}$, $\frac{81\cdots 23}{61\cdots 60}a^{19}+\frac{60\cdots 13}{20\cdots 20}a^{18}-\frac{23\cdots 17}{12\cdots 92}a^{17}-\frac{21\cdots 33}{61\cdots 60}a^{16}-\frac{36\cdots 51}{30\cdots 48}a^{15}+\frac{26\cdots 73}{10\cdots 60}a^{14}+\frac{11\cdots 97}{61\cdots 60}a^{13}-\frac{67\cdots 95}{10\cdots 16}a^{12}-\frac{11\cdots 43}{61\cdots 60}a^{11}+\frac{15\cdots 27}{41\cdots 64}a^{10}-\frac{11\cdots 77}{20\cdots 20}a^{9}+\frac{12\cdots 11}{61\cdots 60}a^{8}+\frac{33\cdots 17}{51\cdots 80}a^{7}+\frac{18\cdots 03}{51\cdots 08}a^{6}+\frac{55\cdots 63}{19\cdots 30}a^{5}+\frac{19\cdots 53}{30\cdots 48}a^{4}-\frac{21\cdots 89}{61\cdots 60}a^{3}-\frac{66\cdots 97}{61\cdots 60}a^{2}-\frac{18\cdots 99}{77\cdots 20}a-\frac{12\cdots 47}{21\cdots 40}$, $\frac{65\cdots 13}{30\cdots 00}a^{19}-\frac{12\cdots 83}{30\cdots 00}a^{18}-\frac{62\cdots 19}{30\cdots 00}a^{17}+\frac{89\cdots 81}{30\cdots 00}a^{16}+\frac{53\cdots 17}{77\cdots 00}a^{15}+\frac{56\cdots 31}{15\cdots 00}a^{14}-\frac{31\cdots 29}{30\cdots 00}a^{13}-\frac{90\cdots 83}{38\cdots 00}a^{12}+\frac{87\cdots 21}{10\cdots 00}a^{11}+\frac{95\cdots 49}{10\cdots 00}a^{10}-\frac{46\cdots 63}{10\cdots 00}a^{9}+\frac{84\cdots 61}{30\cdots 00}a^{8}+\frac{12\cdots 91}{38\cdots 00}a^{7}-\frac{17\cdots 19}{96\cdots 50}a^{6}+\frac{21\cdots 21}{32\cdots 50}a^{5}+\frac{48\cdots 67}{38\cdots 00}a^{4}-\frac{14\cdots 89}{10\cdots 00}a^{3}-\frac{16\cdots 03}{30\cdots 00}a^{2}-\frac{61\cdots 23}{38\cdots 00}a-\frac{21\cdots 67}{35\cdots 00}$
|
| |
| Regulator: | \( 1189076316751181600 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{8}\cdot 1189076316751181600 \cdot 125}{2\cdot\sqrt{10818327022517881605935827576487172209050638458251953125}}\cr\approx \mathstrut & 0.878149833589371 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.15125.1, 5.1.5171495850125.3, 10.2.133721846639300482312578125.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 40 |
| Degree 10 siblings: | 10.0.294188062606461061087671875.1, deg 10 |
| Degree 20 sibling: | deg 20 |
| Minimal sibling: | 10.0.294188062606461061087671875.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{5}$ | ${\href{/padicField/3.4.0.1}{4} }^{5}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{5}$ | R | ${\href{/padicField/13.4.0.1}{4} }^{5}$ | ${\href{/padicField/17.4.0.1}{4} }^{5}$ | ${\href{/padicField/19.2.0.1}{2} }^{8}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{5}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.5.0.1}{5} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{5}$ | R | ${\href{/padicField/43.4.0.1}{4} }^{5}$ | ${\href{/padicField/47.4.0.1}{4} }^{5}$ | ${\href{/padicField/53.4.0.1}{4} }^{5}$ | ${\href{/padicField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
| 5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
| 5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
| 5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
| 5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
|
\(11\)
| 11.1.10.9a1.4 | $x^{10} + 44$ | $10$ | $1$ | $9$ | $C_{10}$ | $$[\ ]_{10}$$ |
| 11.1.10.9a1.4 | $x^{10} + 44$ | $10$ | $1$ | $9$ | $C_{10}$ | $$[\ ]_{10}$$ | |
|
\(41\)
| 41.2.5.8a1.1 | $x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |
| 41.2.5.8a1.1 | $x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |