Normalized defining polynomial
\( x^{10} - x^{9} + 375 x^{8} - 1310 x^{7} + 40085 x^{6} - 207703 x^{5} + 1399773 x^{4} - 4540790 x^{3} + \cdots + 11330265 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[0, 5]$ |
| |
| Discriminant: |
\(-294188062606461061087671875\)
\(\medspace = -\,5^{6}\cdot 11^{9}\cdot 41^{8}\)
|
| |
| Root discriminant: | \(443.47\) |
| |
| Galois root discriminant: | $5^{3/4}11^{9/10}41^{4/5}\approx 564.557271214292$ | ||
| Ramified primes: |
\(5\), \(11\), \(41\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-11}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-11}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{8}a^{4}-\frac{1}{8}a^{2}+\frac{1}{4}a-\frac{1}{8}$, $\frac{1}{88}a^{5}+\frac{5}{88}a^{4}-\frac{1}{88}a^{3}+\frac{21}{88}a^{2}-\frac{39}{88}a-\frac{21}{88}$, $\frac{1}{352}a^{6}+\frac{1}{352}a^{5}-\frac{5}{176}a^{4}-\frac{63}{352}a^{3}-\frac{23}{176}a^{2}-\frac{107}{352}a+\frac{161}{352}$, $\frac{1}{352}a^{7}+\frac{1}{352}a^{5}+\frac{7}{352}a^{4}+\frac{5}{352}a^{3}+\frac{15}{352}a^{2}-\frac{3}{44}a+\frac{115}{352}$, $\frac{1}{1408}a^{8}-\frac{1}{704}a^{7}-\frac{1}{704}a^{6}-\frac{3}{704}a^{5}-\frac{63}{1408}a^{4}+\frac{13}{704}a^{3}+\frac{17}{176}a^{2}-\frac{43}{352}a-\frac{149}{1408}$, $\frac{1}{21\cdots 40}a^{9}+\frac{664580401527}{21\cdots 40}a^{8}-\frac{247696510591}{535229137996960}a^{7}-\frac{233147578549}{267614568998480}a^{6}+\frac{5382865833779}{21\cdots 40}a^{5}+\frac{133349457205739}{21\cdots 40}a^{4}+\frac{8357401714457}{214091655198784}a^{3}+\frac{4315106962401}{107045827599392}a^{2}+\frac{12678291901059}{428183310397568}a-\frac{143096963940449}{428183310397568}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{5}\times C_{5}$, which has order $25$ (assuming GRH) |
| |
| Narrow class group: | $C_{5}\times C_{5}$, which has order $25$ (assuming GRH) |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{99\cdots 37}{194628777453440}a^{9}-\frac{31\cdots 93}{24328597181680}a^{8}-\frac{85\cdots 71}{97314388726720}a^{7}-\frac{30\cdots 73}{97314388726720}a^{6}+\frac{35\cdots 07}{194628777453440}a^{5}-\frac{22\cdots 91}{1520537323855}a^{4}+\frac{50\cdots 71}{9731438872672}a^{3}-\frac{31\cdots 85}{2432859718168}a^{2}+\frac{58\cdots 79}{3538705044608}a-\frac{26\cdots 43}{19462877745344}$, $\frac{20\cdots 31}{9731438872672}a^{9}+\frac{19\cdots 89}{1769352522304}a^{8}-\frac{38\cdots 15}{4865719436336}a^{7}+\frac{11\cdots 23}{4865719436336}a^{6}-\frac{39\cdots 57}{4865719436336}a^{5}+\frac{77\cdots 05}{19462877745344}a^{4}-\frac{24\cdots 23}{9731438872672}a^{3}+\frac{67\cdots 45}{884676261152}a^{2}-\frac{33\cdots 55}{2432859718168}a+\frac{21\cdots 89}{19462877745344}$, $\frac{20\cdots 27}{214091655198784}a^{9}+\frac{34\cdots 35}{214091655198784}a^{8}+\frac{36\cdots 59}{107045827599392}a^{7}-\frac{48\cdots 25}{53522913799696}a^{6}+\frac{63\cdots 75}{214091655198784}a^{5}-\frac{32\cdots 67}{214091655198784}a^{4}+\frac{13\cdots 27}{26761456899848}a^{3}-\frac{90\cdots 25}{107045827599392}a^{2}+\frac{19\cdots 21}{214091655198784}a-\frac{89\cdots 31}{214091655198784}$, $\frac{16\cdots 79}{66903642249620}a^{9}-\frac{35\cdots 23}{10\cdots 20}a^{8}-\frac{39\cdots 66}{16725910562405}a^{7}-\frac{78\cdots 43}{16725910562405}a^{6}+\frac{12\cdots 67}{535229137996960}a^{5}-\frac{23\cdots 21}{10\cdots 20}a^{4}+\frac{81\cdots 63}{107045827599392}a^{3}-\frac{20\cdots 79}{107045827599392}a^{2}+\frac{27\cdots 71}{107045827599392}a-\frac{46\cdots 85}{214091655198784}$
|
| |
| Regulator: | \( 211938177.9326882 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 211938177.9326882 \cdot 25}{2\cdot\sqrt{294188062606461061087671875}}\cr\approx \mathstrut & 1.51253707228861 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times F_5$ (as 10T5):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $F_{5}\times C_2$ |
| Character table for $F_{5}\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 5.1.5171495850125.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{2}{,}\,{\href{/padicField/2.2.0.1}{2} }$ | ${\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }$ | R | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.2.0.1}{2} }^{5}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{5}$ | ${\href{/padicField/31.5.0.1}{5} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
| 5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
|
\(11\)
| 11.1.10.9a1.4 | $x^{10} + 44$ | $10$ | $1$ | $9$ | $C_{10}$ | $$[\ ]_{10}$$ |
|
\(41\)
| 41.2.5.8a1.1 | $x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |