Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $9$ | |
| Group : | $C_2\times F_5$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,17,13,9,6,2,18,14,10,5)(3,20,16,11,8,4,19,15,12,7), (1,15,17,3)(2,16,18,4)(5,8,13,11)(6,7,14,12)(9,19,10,20) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $C_4\times C_2$ 20: $F_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 5: $F_5$
Degree 10: $F_5$
Low degree siblings
10T5 x 2, 20T13, 40T14Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3,19)( 4,20)( 5,17)( 6,18)( 7,15)( 8,16)( 9,14)(10,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 2)( 3,20)( 4,19)( 5,18)( 6,17)( 7,16)( 8,15)( 9,13)(10,14)(11,12)$ |
| $ 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 3, 9, 7)( 2, 4,10, 8)( 5,15, 6,16)(11,13,19,17)(12,14,20,18)$ |
| $ 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 3,17,15)( 2, 4,18,16)( 5,11,13, 8)( 6,12,14, 7)( 9,20,10,19)$ |
| $ 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 4, 9, 8)( 2, 3,10, 7)( 5,16, 6,15)(11,14,19,18)(12,13,20,17)$ |
| $ 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 4,17,16)( 2, 3,18,15)( 5,12,13, 7)( 6,11,14, 8)( 9,19,10,20)$ |
| $ 10, 10 $ | $4$ | $10$ | $( 1, 5,10,14,18, 2, 6, 9,13,17)( 3, 7,12,15,19, 4, 8,11,16,20)$ |
| $ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 6,10,13,18)( 2, 5, 9,14,17)( 3, 8,12,16,19)( 4, 7,11,15,20)$ |
Group invariants
| Order: | $40=2^{3} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [40, 12] |
| Character table: |
2 3 3 3 3 3 3 3 3 1 1
5 1 . 1 . . . . . 1 1
1a 2a 2b 2c 4a 4b 4c 4d 10a 5a
2P 1a 1a 1a 1a 2c 2c 2c 2c 5a 5a
3P 1a 2a 2b 2c 4d 4c 4b 4a 10a 5a
5P 1a 2a 2b 2c 4a 4b 4c 4d 2b 1a
7P 1a 2a 2b 2c 4d 4c 4b 4a 10a 5a
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 1 1 -1 -1 1
X.3 1 -1 -1 1 1 -1 -1 1 -1 1
X.4 1 1 1 1 -1 -1 -1 -1 1 1
X.5 1 -1 1 -1 A -A A -A 1 1
X.6 1 -1 1 -1 -A A -A A 1 1
X.7 1 1 -1 -1 A A -A -A -1 1
X.8 1 1 -1 -1 -A -A A A -1 1
X.9 4 . -4 . . . . . 1 -1
X.10 4 . 4 . . . . . -1 -1
A = -E(4)
= -Sqrt(-1) = -i
|