Normalized defining polynomial
\( x^{20} - 160 x^{18} + 10790 x^{16} - 372 x^{15} - 400000 x^{14} + 37080 x^{13} + 8908075 x^{12} - 1405800 x^{11} - 122060112 x^{10} + 25437000 x^{9} + 1009834870 x^{8} - 221247000 x^{7} - 4729220200 x^{6} + 784838688 x^{5} + 10914530225 x^{4} - 681612780 x^{3} - 8806862800 x^{2} + 1007795640 x + 916095316 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17687695508088196514062500000000000000000000=2^{20}\cdot 3^{10}\cdot 5^{26}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $145.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{10} a^{8} + \frac{1}{10} a^{7} - \frac{1}{10} a^{5} + \frac{2}{5} a^{4} - \frac{1}{10} a^{3} - \frac{1}{2} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{10} a^{9} - \frac{1}{10} a^{7} - \frac{1}{10} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{2}{5} a^{3} + \frac{1}{10} a^{2} + \frac{2}{5}$, $\frac{1}{20} a^{10} - \frac{1}{4} a^{6} - \frac{3}{10} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{3}{10}$, $\frac{1}{20} a^{11} - \frac{1}{4} a^{7} + \frac{1}{5} a^{6} + \frac{1}{4} a^{3} + \frac{3}{10} a$, $\frac{1}{60} a^{12} - \frac{1}{60} a^{10} - \frac{1}{20} a^{8} + \frac{1}{10} a^{7} - \frac{1}{12} a^{6} + \frac{2}{5} a^{5} + \frac{1}{20} a^{4} - \frac{1}{5} a^{3} - \frac{19}{60} a^{2} - \frac{3}{10} a - \frac{7}{30}$, $\frac{1}{60} a^{13} - \frac{1}{60} a^{11} - \frac{1}{20} a^{9} - \frac{11}{60} a^{7} - \frac{1}{10} a^{6} + \frac{3}{20} a^{5} - \frac{1}{10} a^{4} - \frac{13}{60} a^{3} - \frac{3}{10} a^{2} + \frac{1}{6} a + \frac{2}{5}$, $\frac{1}{600} a^{14} - \frac{1}{300} a^{13} + \frac{1}{200} a^{12} + \frac{1}{75} a^{11} - \frac{1}{150} a^{10} + \frac{1}{25} a^{9} - \frac{23}{600} a^{8} - \frac{1}{75} a^{7} - \frac{17}{150} a^{6} + \frac{1}{25} a^{5} - \frac{139}{600} a^{4} - \frac{29}{75} a^{3} - \frac{19}{200} a^{2} + \frac{89}{300} a - \frac{127}{300}$, $\frac{1}{36600} a^{15} - \frac{221}{36600} a^{13} + \frac{1}{150} a^{12} - \frac{17}{9150} a^{11} + \frac{29}{9150} a^{10} - \frac{151}{7320} a^{9} - \frac{41}{1525} a^{8} + \frac{877}{4575} a^{7} + \frac{337}{9150} a^{6} + \frac{10709}{36600} a^{5} + \frac{2}{5} a^{4} + \frac{239}{600} a^{3} - \frac{19}{150} a^{2} - \frac{149}{300} a + \frac{13}{150}$, $\frac{1}{36600} a^{16} + \frac{23}{36600} a^{14} - \frac{1}{150} a^{13} + \frac{9}{6100} a^{12} + \frac{119}{18300} a^{11} + \frac{709}{36600} a^{10} + \frac{101}{3050} a^{9} - \frac{71}{6100} a^{8} + \frac{2443}{18300} a^{7} + \frac{2657}{36600} a^{6} + \frac{23}{50} a^{5} + \frac{13}{600} a^{4} + \frac{83}{300} a^{3} - \frac{41}{100} a^{2} + \frac{13}{75} a - \frac{4}{25}$, $\frac{1}{36600} a^{17} - \frac{77}{12200} a^{13} + \frac{119}{18300} a^{12} - \frac{3}{2440} a^{11} + \frac{1}{4575} a^{10} + \frac{167}{7320} a^{9} - \frac{9}{6100} a^{8} - \frac{891}{12200} a^{7} - \frac{379}{1830} a^{6} + \frac{2757}{6100} a^{5} + \frac{1}{20} a^{4} - \frac{7}{200} a^{3} + \frac{11}{150} a^{2} + \frac{1}{60} a + \frac{37}{150}$, $\frac{1}{174142800} a^{18} - \frac{17}{2854800} a^{17} + \frac{83}{6697800} a^{16} - \frac{19}{2854800} a^{15} - \frac{73573}{174142800} a^{14} - \frac{496543}{87071400} a^{13} + \frac{189077}{174142800} a^{12} - \frac{135631}{19349200} a^{11} - \frac{160701}{19349200} a^{10} + \frac{1024313}{29023800} a^{9} + \frac{2877727}{58047600} a^{8} - \frac{206029}{951600} a^{7} - \frac{21571}{109800} a^{6} + \frac{325699}{2854800} a^{5} - \frac{895913}{2854800} a^{4} - \frac{40097}{142740} a^{3} + \frac{877}{2340} a^{2} + \frac{5461}{11700} a - \frac{3727}{11700}$, $\frac{1}{2484741735498845196509900214378512375547771600} a^{19} - \frac{1265378932764658483546109067160704167}{828247245166281732169966738126170791849257200} a^{18} + \frac{5655458673884325300185245949973503294551}{414123622583140866084983369063085395924628600} a^{17} - \frac{3883524927554419159496063701489709050751}{2484741735498845196509900214378512375547771600} a^{16} + \frac{1619521534304330565699275222281026618887}{165649449033256346433993347625234158369851440} a^{15} + \frac{30862343593324309672182784753297707415043}{248474173549884519650990021437851237554777160} a^{14} + \frac{196958396422311131961171785566024099591}{667761820881173124565950071050393006059600} a^{13} - \frac{15083676366354243465086240507636334765371747}{2484741735498845196509900214378512375547771600} a^{12} - \frac{1516044289595713450547406751379693463534059}{828247245166281732169966738126170791849257200} a^{11} - \frac{69509344813405431870729029756066889576391}{5521648301108544881133111587507805278995048} a^{10} - \frac{33252572648222415033215148128886302903773}{4247421770083496062410085836544465599226960} a^{9} + \frac{10964550462033643304890745059722616569582481}{276082415055427244056655579375390263949752400} a^{8} - \frac{2925077843300277934576026045793375363197469}{20366735536875780299261477167036986684817800} a^{7} + \frac{333883426338524045184721570775472795199143}{4525941230416840066502550481563774818848400} a^{6} + \frac{269538077919564505115891232585422692290573}{905188246083368013300510096312754963769680} a^{5} - \frac{48358012260709162716525412320320072162143}{5091683884218945074815369291759246671204450} a^{4} + \frac{509508530225969124435052771255582167226867}{1357782369125052019950765144469132445654520} a^{3} - \frac{39786685682790630683042727026166103304179}{166940455220293281141487517762598251514900} a^{2} + \frac{20290215996068680213640653021958384992567}{41735113805073320285371879440649562878725} a - \frac{7054236352178434428126287936592210207281}{16694045522029328114148751776259825151490}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9814449721720000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 100 |
| The 16 conjugacy class representatives for $D_5^2$ |
| Character table for $D_5^2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{3}, \sqrt{5})\), 10.10.841134840750000000000.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||