Group action invariants
Degree $n$: | $20$ | |
Transitive number $t$: | $28$ | |
Group: | $D_5^2$ | |
Parity: | $1$ | |
Primitive: | no | |
Nilpotency class: | $-1$ (not nilpotent) | |
$|\Aut(F/K)|$: | $10$ | |
Generators: | (1,5)(2,6)(3,20)(4,19)(7,16)(8,15)(9,17)(10,18)(11,12)(13,14), (1,12,14,3,6,16,17,8,10,19)(2,11,13,4,5,15,18,7,9,20) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $10$: $D_{5}$ x 2 $20$: $D_{10}$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 5: None
Degree 10: $D_5^2$
Low degree siblings
10T9 x 2, 20T28, 25T12Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $5$ | $( 3, 8,12,16,19)( 4, 7,11,15,20)$ |
$ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $5$ | $( 3,12,19, 8,16)( 4,11,20, 7,15)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $25$ | $2$ | $( 1, 2)( 3, 4)( 5,17)( 6,18)( 7,19)( 8,20)( 9,14)(10,13)(11,16)(12,15)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)$ |
$ 10, 10 $ | $10$ | $10$ | $( 1, 3, 6, 8,10,12,14,16,17,19)( 2, 4, 5, 7, 9,11,13,15,18,20)$ |
$ 10, 10 $ | $10$ | $10$ | $( 1, 3,10,12,17,19, 6, 8,14,16)( 2, 4, 9,11,18,20, 5, 7,13,15)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 4)( 2, 3)( 5,19)( 6,20)( 7,17)( 8,18)( 9,16)(10,15)(11,14)(12,13)$ |
$ 10, 10 $ | $10$ | $10$ | $( 1, 4, 6,20,10,15,14,11,17, 7)( 2, 3, 5,19, 9,16,13,12,18, 8)$ |
$ 10, 10 $ | $10$ | $10$ | $( 1, 4,10,15,17, 7, 6,20,14,11)( 2, 3, 9,16,18, 8, 5,19,13,12)$ |
$ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 6,10,14,17)( 2, 5, 9,13,18)( 3, 8,12,16,19)( 4, 7,11,15,20)$ |
$ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 6,10,14,17)( 2, 5, 9,13,18)( 3,12,19, 8,16)( 4,11,20, 7,15)$ |
$ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 6,10,14,17)( 2, 5, 9,13,18)( 3,16, 8,19,12)( 4,15, 7,20,11)$ |
$ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 6,10,14,17)( 2, 5, 9,13,18)( 3,19,16,12, 8)( 4,20,15,11, 7)$ |
$ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1,10,17, 6,14)( 2, 9,18, 5,13)( 3,12,19, 8,16)( 4,11,20, 7,15)$ |
$ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1,10,17, 6,14)( 2, 9,18, 5,13)( 3,16, 8,19,12)( 4,15, 7,20,11)$ |
Group invariants
Order: | $100=2^{2} \cdot 5^{2}$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | yes | |
GAP id: | [100, 13] |
Character table: |
2 2 . . 2 2 1 1 2 1 1 1 . . 1 1 1 5 2 2 2 . 1 1 1 1 1 1 2 2 2 2 2 2 1a 5a 5b 2a 2b 10a 10b 2c 10c 10d 5c 5d 5e 5f 5g 5h 2P 1a 5b 5a 1a 1a 5c 5g 1a 5f 5h 5g 5e 5d 5h 5c 5f 3P 1a 5b 5a 2a 2b 10b 10a 2c 10d 10c 5g 5e 5d 5h 5c 5f 5P 1a 1a 1a 2a 2b 2b 2b 2c 2c 2c 1a 1a 1a 1a 1a 1a 7P 1a 5b 5a 2a 2b 10b 10a 2c 10d 10c 5g 5e 5d 5h 5c 5f X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 X.3 1 1 1 -1 1 1 1 -1 -1 -1 1 1 1 1 1 1 X.4 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 X.5 2 A *A . -2 -A -*A . . . *A *A A 2 A 2 X.6 2 *A A . -2 -*A -A . . . A A *A 2 *A 2 X.7 2 A *A . . . . -2 -A -*A 2 A *A *A 2 A X.8 2 *A A . . . . -2 -*A -A 2 *A A A 2 *A X.9 2 A *A . . . . 2 A *A 2 A *A *A 2 A X.10 2 *A A . . . . 2 *A A 2 *A A A 2 *A X.11 2 A *A . 2 A *A . . . *A *A A 2 A 2 X.12 2 *A A . 2 *A A . . . A A *A 2 *A 2 X.13 4 B *B . . . . . . . C -1 -1 C *C *C X.14 4 *B B . . . . . . . *C -1 -1 *C C C X.15 4 -1 -1 . . . . . . . C *B B *C *C C X.16 4 -1 -1 . . . . . . . *C B *B C C *C A = E(5)^2+E(5)^3 = (-1-Sqrt(5))/2 = -1-b5 B = -2*E(5)-E(5)^2-E(5)^3-2*E(5)^4 = (3-Sqrt(5))/2 = 1-b5 C = 2*E(5)^2+2*E(5)^3 = -1-Sqrt(5) = -1-r5 |