Properties

Label 20.12.410...576.1
Degree $20$
Signature $[12, 4]$
Discriminant $4.104\times 10^{46}$
Root discriminant \(214.12\)
Ramified primes $2,3,13,347,5145233$
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $C_2^{10}.C_3^4:S_5$ (as 20T1035)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^20 - 264*x^18 - 976*x^17 + 26874*x^16 + 202704*x^15 - 909396*x^14 - 15075000*x^13 - 30990747*x^12 + 380528352*x^11 + 2672674146*x^10 + 3920991528*x^9 - 30769064512*x^8 - 203355815760*x^7 - 607022085426*x^6 - 1074952849288*x^5 - 1143465755040*x^4 - 636507402480*x^3 - 64156438152*x^2 + 99783624600*x + 31046369877)
 
Copy content gp:K = bnfinit(y^20 - 264*y^18 - 976*y^17 + 26874*y^16 + 202704*y^15 - 909396*y^14 - 15075000*y^13 - 30990747*y^12 + 380528352*y^11 + 2672674146*y^10 + 3920991528*y^9 - 30769064512*y^8 - 203355815760*y^7 - 607022085426*y^6 - 1074952849288*y^5 - 1143465755040*y^4 - 636507402480*y^3 - 64156438152*y^2 + 99783624600*y + 31046369877, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 264*x^18 - 976*x^17 + 26874*x^16 + 202704*x^15 - 909396*x^14 - 15075000*x^13 - 30990747*x^12 + 380528352*x^11 + 2672674146*x^10 + 3920991528*x^9 - 30769064512*x^8 - 203355815760*x^7 - 607022085426*x^6 - 1074952849288*x^5 - 1143465755040*x^4 - 636507402480*x^3 - 64156438152*x^2 + 99783624600*x + 31046369877);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^20 - 264*x^18 - 976*x^17 + 26874*x^16 + 202704*x^15 - 909396*x^14 - 15075000*x^13 - 30990747*x^12 + 380528352*x^11 + 2672674146*x^10 + 3920991528*x^9 - 30769064512*x^8 - 203355815760*x^7 - 607022085426*x^6 - 1074952849288*x^5 - 1143465755040*x^4 - 636507402480*x^3 - 64156438152*x^2 + 99783624600*x + 31046369877)
 

\( x^{20} - 264 x^{18} - 976 x^{17} + 26874 x^{16} + 202704 x^{15} - 909396 x^{14} - 15075000 x^{13} + \cdots + 31046369877 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $20$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[12, 4]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(41041796771414445392922107616798059242325016576\) \(\medspace = 2^{30}\cdot 3^{20}\cdot 13^{4}\cdot 347^{4}\cdot 5145233^{2}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(214.12\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\), \(13\), \(347\), \(5145233\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_1$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{7}-\frac{1}{2}a$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{9}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{28}a^{15}+\frac{1}{7}a^{14}+\frac{1}{28}a^{13}+\frac{3}{14}a^{12}-\frac{3}{28}a^{11}+\frac{1}{28}a^{10}-\frac{13}{28}a^{9}-\frac{3}{14}a^{8}-\frac{1}{7}a^{7}-\frac{5}{28}a^{6}-\frac{9}{28}a^{5}-\frac{3}{7}a^{4}+\frac{13}{28}a^{3}+\frac{1}{7}a^{2}+\frac{3}{14}a-\frac{11}{28}$, $\frac{1}{252}a^{16}-\frac{19}{84}a^{14}-\frac{10}{63}a^{13}-\frac{3}{28}a^{12}-\frac{19}{84}a^{11}-\frac{5}{28}a^{10}-\frac{3}{7}a^{9}-\frac{10}{21}a^{8}+\frac{9}{28}a^{7}+\frac{9}{28}a^{6}-\frac{5}{21}a^{5}+\frac{47}{252}a^{4}-\frac{5}{14}a^{3}+\frac{17}{42}a^{2}-\frac{7}{36}a-\frac{3}{14}$, $\frac{1}{2268}a^{17}-\frac{1}{108}a^{15}+\frac{241}{1134}a^{14}+\frac{43}{252}a^{13}+\frac{95}{756}a^{12}+\frac{53}{252}a^{11}+\frac{31}{126}a^{10}-\frac{17}{54}a^{9}-\frac{1}{252}a^{8}+\frac{13}{36}a^{7}-\frac{62}{189}a^{6}+\frac{731}{2268}a^{5}+\frac{1}{21}a^{4}-\frac{68}{189}a^{3}-\frac{787}{2268}a^{2}+\frac{5}{21}a-\frac{2}{7}$, $\frac{1}{20412}a^{18}-\frac{1}{972}a^{16}-\frac{247}{20412}a^{15}+\frac{475}{2268}a^{14}-\frac{641}{3402}a^{13}+\frac{449}{2268}a^{12}-\frac{325}{2268}a^{11}+\frac{653}{6804}a^{10}-\frac{293}{1134}a^{9}+\frac{703}{2268}a^{8}-\frac{583}{3402}a^{7}+\frac{1621}{10206}a^{6}-\frac{89}{756}a^{5}+\frac{661}{1701}a^{4}-\frac{2297}{10206}a^{3}+\frac{103}{378}a^{2}-\frac{5}{63}a-\frac{3}{28}$, $\frac{1}{20\cdots 48}a^{19}+\frac{35\cdots 11}{33\cdots 96}a^{18}-\frac{17\cdots 21}{34\cdots 58}a^{17}+\frac{14\cdots 79}{10\cdots 74}a^{16}+\frac{71\cdots 99}{77\cdots 24}a^{15}+\frac{28\cdots 27}{69\cdots 16}a^{14}+\frac{66\cdots 80}{58\cdots 93}a^{13}-\frac{49\cdots 39}{23\cdots 72}a^{12}-\frac{20\cdots 55}{99\cdots 88}a^{11}-\frac{53\cdots 33}{23\cdots 72}a^{10}+\frac{56\cdots 59}{23\cdots 72}a^{9}-\frac{59\cdots 13}{34\cdots 58}a^{8}-\frac{14\cdots 39}{20\cdots 48}a^{7}-\frac{11\cdots 53}{23\cdots 72}a^{6}+\frac{67\cdots 17}{34\cdots 58}a^{5}-\frac{52\cdots 31}{52\cdots 37}a^{4}+\frac{13\cdots 23}{58\cdots 93}a^{3}+\frac{11\cdots 21}{25\cdots 08}a^{2}+\frac{15\cdots 33}{31\cdots 68}a-\frac{28\cdots 93}{31\cdots 68}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  $C_{2}$, which has order $2$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $15$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{12\cdots 84}{58\cdots 93}a^{19}-\frac{26\cdots 46}{58\cdots 93}a^{18}-\frac{11\cdots 28}{19\cdots 31}a^{17}-\frac{54\cdots 56}{58\cdots 93}a^{16}+\frac{35\cdots 04}{58\cdots 93}a^{15}+\frac{87\cdots 28}{27\cdots 33}a^{14}-\frac{52\cdots 56}{19\cdots 31}a^{13}-\frac{59\cdots 05}{21\cdots 59}a^{12}-\frac{13\cdots 24}{19\cdots 31}a^{11}+\frac{16\cdots 98}{19\cdots 31}a^{10}+\frac{25\cdots 40}{64\cdots 77}a^{9}-\frac{88\cdots 68}{19\cdots 31}a^{8}-\frac{39\cdots 24}{58\cdots 93}a^{7}-\frac{24\cdots 28}{83\cdots 99}a^{6}-\frac{12\cdots 72}{19\cdots 31}a^{5}-\frac{49\cdots 73}{58\cdots 93}a^{4}-\frac{46\cdots 36}{83\cdots 99}a^{3}-\frac{22\cdots 46}{23\cdots 51}a^{2}+\frac{58\cdots 80}{71\cdots 53}a+\frac{23\cdots 36}{79\cdots 17}$, $\frac{69\cdots 32}{52\cdots 37}a^{19}-\frac{49\cdots 94}{58\cdots 93}a^{18}-\frac{53\cdots 88}{17\cdots 79}a^{17}+\frac{56\cdots 47}{74\cdots 91}a^{16}+\frac{19\cdots 52}{58\cdots 93}a^{15}+\frac{81\cdots 84}{17\cdots 79}a^{14}-\frac{10\cdots 28}{58\cdots 93}a^{13}-\frac{51\cdots 73}{58\cdots 93}a^{12}+\frac{54\cdots 24}{17\cdots 79}a^{11}+\frac{21\cdots 94}{58\cdots 93}a^{10}+\frac{48\cdots 88}{58\cdots 93}a^{9}-\frac{58\cdots 56}{17\cdots 79}a^{8}-\frac{13\cdots 92}{52\cdots 37}a^{7}-\frac{43\cdots 60}{58\cdots 93}a^{6}-\frac{20\cdots 20}{17\cdots 79}a^{5}-\frac{55\cdots 27}{52\cdots 37}a^{4}-\frac{25\cdots 76}{58\cdots 93}a^{3}+\frac{17\cdots 82}{64\cdots 77}a^{2}+\frac{55\cdots 80}{71\cdots 53}a+\frac{13\cdots 28}{79\cdots 17}$, $\frac{18\cdots 40}{52\cdots 37}a^{19}-\frac{68\cdots 88}{58\cdots 93}a^{18}-\frac{15\cdots 52}{17\cdots 79}a^{17}-\frac{21\cdots 54}{52\cdots 37}a^{16}+\frac{18\cdots 80}{19\cdots 31}a^{15}+\frac{66\cdots 68}{17\cdots 79}a^{14}-\frac{25\cdots 52}{58\cdots 93}a^{13}-\frac{21\cdots 38}{58\cdots 93}a^{12}+\frac{32\cdots 16}{17\cdots 79}a^{11}+\frac{72\cdots 56}{58\cdots 93}a^{10}+\frac{28\cdots 40}{58\cdots 93}a^{9}-\frac{59\cdots 91}{17\cdots 79}a^{8}-\frac{70\cdots 64}{74\cdots 91}a^{7}-\frac{22\cdots 88}{58\cdots 93}a^{6}-\frac{13\cdots 92}{17\cdots 79}a^{5}-\frac{72\cdots 18}{74\cdots 91}a^{4}-\frac{35\cdots 04}{58\cdots 93}a^{3}-\frac{57\cdots 12}{64\cdots 77}a^{2}+\frac{65\cdots 28}{71\cdots 53}a+\frac{24\cdots 61}{79\cdots 17}$, $\frac{35\cdots 79}{20\cdots 48}a^{19}-\frac{10\cdots 37}{23\cdots 72}a^{18}-\frac{30\cdots 79}{69\cdots 16}a^{17}-\frac{11\cdots 59}{20\cdots 48}a^{16}+\frac{12\cdots 54}{27\cdots 33}a^{15}+\frac{77\cdots 31}{34\cdots 58}a^{14}-\frac{47\cdots 17}{23\cdots 72}a^{13}-\frac{46\cdots 11}{23\cdots 72}a^{12}-\frac{27\cdots 19}{69\cdots 16}a^{11}+\frac{36\cdots 51}{58\cdots 93}a^{10}+\frac{67\cdots 47}{23\cdots 72}a^{9}-\frac{91\cdots 11}{69\cdots 16}a^{8}-\frac{10\cdots 75}{20\cdots 48}a^{7}-\frac{12\cdots 51}{58\cdots 93}a^{6}-\frac{52\cdots 33}{99\cdots 88}a^{5}-\frac{15\cdots 67}{20\cdots 48}a^{4}-\frac{64\cdots 29}{11\cdots 86}a^{3}-\frac{10\cdots 12}{64\cdots 77}a^{2}+\frac{50\cdots 24}{79\cdots 17}a+\frac{13\cdots 99}{31\cdots 68}$, $\frac{87\cdots 73}{20\cdots 48}a^{19}-\frac{29\cdots 35}{58\cdots 93}a^{18}-\frac{38\cdots 97}{34\cdots 58}a^{17}-\frac{27\cdots 29}{10\cdots 74}a^{16}+\frac{14\cdots 71}{12\cdots 48}a^{15}+\frac{48\cdots 19}{69\cdots 16}a^{14}-\frac{11\cdots 55}{23\cdots 72}a^{13}-\frac{13\cdots 53}{23\cdots 72}a^{12}-\frac{13\cdots 11}{34\cdots 58}a^{11}+\frac{10\cdots 56}{58\cdots 93}a^{10}+\frac{10\cdots 19}{11\cdots 86}a^{9}+\frac{10\cdots 17}{69\cdots 16}a^{8}-\frac{20\cdots 65}{14\cdots 82}a^{7}-\frac{14\cdots 13}{23\cdots 72}a^{6}-\frac{51\cdots 31}{34\cdots 58}a^{5}-\frac{39\cdots 89}{20\cdots 48}a^{4}-\frac{29\cdots 25}{23\cdots 72}a^{3}-\frac{70\cdots 25}{31\cdots 68}a^{2}+\frac{13\cdots 59}{71\cdots 53}a+\frac{21\cdots 97}{31\cdots 68}$, $\frac{12\cdots 50}{52\cdots 37}a^{19}-\frac{27\cdots 55}{25\cdots 08}a^{18}-\frac{98\cdots 23}{17\cdots 79}a^{17}+\frac{81\cdots 65}{20\cdots 48}a^{16}+\frac{71\cdots 29}{11\cdots 86}a^{15}+\frac{12\cdots 93}{69\cdots 16}a^{14}-\frac{71\cdots 61}{23\cdots 72}a^{13}-\frac{48\cdots 49}{23\cdots 72}a^{12}+\frac{53\cdots 07}{17\cdots 79}a^{11}+\frac{89\cdots 23}{11\cdots 86}a^{10}+\frac{59\cdots 41}{23\cdots 72}a^{9}-\frac{26\cdots 75}{69\cdots 16}a^{8}-\frac{58\cdots 33}{10\cdots 74}a^{7}-\frac{15\cdots 65}{77\cdots 24}a^{6}-\frac{69\cdots 98}{17\cdots 79}a^{5}-\frac{23\cdots 75}{52\cdots 37}a^{4}-\frac{20\cdots 19}{77\cdots 24}a^{3}-\frac{67\cdots 67}{21\cdots 59}a^{2}+\frac{58\cdots 83}{14\cdots 06}a+\frac{10\cdots 96}{79\cdots 17}$, $\frac{26\cdots 43}{23\cdots 72}a^{19}-\frac{28\cdots 89}{25\cdots 08}a^{18}-\frac{11\cdots 09}{38\cdots 62}a^{17}-\frac{47\cdots 29}{58\cdots 93}a^{16}+\frac{41\cdots 25}{12\cdots 54}a^{15}+\frac{15\cdots 75}{77\cdots 24}a^{14}-\frac{32\cdots 61}{25\cdots 08}a^{13}-\frac{41\cdots 15}{25\cdots 08}a^{12}-\frac{70\cdots 65}{38\cdots 62}a^{11}+\frac{30\cdots 63}{64\cdots 77}a^{10}+\frac{33\cdots 69}{12\cdots 54}a^{9}+\frac{59\cdots 73}{38\cdots 62}a^{8}-\frac{88\cdots 61}{23\cdots 72}a^{7}-\frac{24\cdots 05}{12\cdots 54}a^{6}-\frac{36\cdots 11}{77\cdots 24}a^{5}-\frac{77\cdots 59}{11\cdots 86}a^{4}-\frac{12\cdots 69}{25\cdots 08}a^{3}-\frac{27\cdots 15}{25\cdots 08}a^{2}+\frac{28\cdots 99}{41\cdots 16}a+\frac{43\cdots 07}{15\cdots 34}$, $\frac{35\cdots 17}{20\cdots 48}a^{19}-\frac{83\cdots 13}{23\cdots 72}a^{18}-\frac{15\cdots 69}{34\cdots 58}a^{17}-\frac{14\cdots 07}{20\cdots 48}a^{16}+\frac{10\cdots 55}{23\cdots 72}a^{15}+\frac{83\cdots 53}{34\cdots 58}a^{14}-\frac{11\cdots 71}{58\cdots 93}a^{13}-\frac{24\cdots 59}{11\cdots 86}a^{12}-\frac{13\cdots 72}{17\cdots 79}a^{11}+\frac{37\cdots 00}{58\cdots 93}a^{10}+\frac{71\cdots 27}{23\cdots 72}a^{9}+\frac{39\cdots 07}{34\cdots 58}a^{8}-\frac{26\cdots 29}{52\cdots 37}a^{7}-\frac{13\cdots 56}{58\cdots 93}a^{6}-\frac{92\cdots 32}{17\cdots 79}a^{5}-\frac{14\cdots 13}{20\cdots 48}a^{4}-\frac{56\cdots 81}{11\cdots 86}a^{3}-\frac{11\cdots 23}{12\cdots 48}a^{2}+\frac{99\cdots 27}{14\cdots 06}a+\frac{11\cdots 73}{45\cdots 24}$, $\frac{12\cdots 92}{24\cdots 97}a^{19}-\frac{13\cdots 27}{11\cdots 86}a^{18}-\frac{15\cdots 69}{11\cdots 86}a^{17}-\frac{32\cdots 52}{17\cdots 79}a^{16}+\frac{81\cdots 52}{58\cdots 93}a^{15}+\frac{80\cdots 43}{11\cdots 86}a^{14}-\frac{40\cdots 70}{64\cdots 77}a^{13}-\frac{11\cdots 58}{19\cdots 31}a^{12}-\frac{69\cdots 63}{58\cdots 93}a^{11}+\frac{12\cdots 66}{64\cdots 77}a^{10}+\frac{34\cdots 67}{38\cdots 62}a^{9}-\frac{13\cdots 73}{11\cdots 86}a^{8}-\frac{53\cdots 73}{34\cdots 58}a^{7}-\frac{38\cdots 27}{58\cdots 93}a^{6}-\frac{86\cdots 27}{58\cdots 93}a^{5}-\frac{33\cdots 69}{17\cdots 79}a^{4}-\frac{14\cdots 21}{11\cdots 86}a^{3}-\frac{19\cdots 06}{92\cdots 11}a^{2}+\frac{13\cdots 45}{71\cdots 53}a+\frac{53\cdots 13}{79\cdots 17}$, $\frac{15\cdots 99}{34\cdots 58}a^{19}-\frac{13\cdots 99}{83\cdots 99}a^{18}-\frac{12\cdots 21}{11\cdots 86}a^{17}-\frac{39\cdots 61}{17\cdots 79}a^{16}+\frac{13\cdots 01}{11\cdots 86}a^{15}+\frac{26\cdots 77}{58\cdots 93}a^{14}-\frac{22\cdots 29}{38\cdots 62}a^{13}-\frac{17\cdots 79}{38\cdots 62}a^{12}+\frac{36\cdots 09}{11\cdots 86}a^{11}+\frac{60\cdots 97}{38\cdots 62}a^{10}+\frac{23\cdots 57}{38\cdots 62}a^{9}-\frac{57\cdots 65}{11\cdots 86}a^{8}-\frac{20\cdots 87}{17\cdots 79}a^{7}-\frac{77\cdots 71}{16\cdots 98}a^{6}-\frac{56\cdots 15}{58\cdots 93}a^{5}-\frac{29\cdots 43}{24\cdots 97}a^{4}-\frac{42\cdots 83}{58\cdots 93}a^{3}-\frac{45\cdots 91}{43\cdots 18}a^{2}+\frac{52\cdots 77}{47\cdots 02}a+\frac{84\cdots 25}{22\cdots 62}$, $\frac{17\cdots 25}{52\cdots 37}a^{19}-\frac{41\cdots 53}{33\cdots 96}a^{18}-\frac{58\cdots 83}{69\cdots 16}a^{17}-\frac{82\cdots 38}{52\cdots 37}a^{16}+\frac{52\cdots 82}{58\cdots 93}a^{15}+\frac{59\cdots 77}{17\cdots 79}a^{14}-\frac{99\cdots 79}{23\cdots 72}a^{13}-\frac{79\cdots 41}{23\cdots 72}a^{12}+\frac{23\cdots 07}{99\cdots 88}a^{11}+\frac{68\cdots 49}{58\cdots 93}a^{10}+\frac{52\cdots 17}{11\cdots 86}a^{9}-\frac{13\cdots 67}{34\cdots 58}a^{8}-\frac{46\cdots 55}{52\cdots 37}a^{7}-\frac{80\cdots 73}{23\cdots 72}a^{6}-\frac{12\cdots 86}{17\cdots 79}a^{5}-\frac{26\cdots 07}{29\cdots 64}a^{4}-\frac{63\cdots 15}{11\cdots 86}a^{3}-\frac{76\cdots 97}{95\cdots 04}a^{2}+\frac{23\cdots 19}{28\cdots 12}a+\frac{88\cdots 23}{31\cdots 68}$, $\frac{48\cdots 63}{20\cdots 48}a^{19}-\frac{33\cdots 67}{58\cdots 93}a^{18}-\frac{20\cdots 91}{34\cdots 58}a^{17}-\frac{80\cdots 21}{10\cdots 74}a^{16}+\frac{41\cdots 72}{64\cdots 77}a^{15}+\frac{30\cdots 47}{99\cdots 88}a^{14}-\frac{16\cdots 71}{58\cdots 93}a^{13}-\frac{92\cdots 89}{33\cdots 96}a^{12}-\frac{12\cdots 35}{69\cdots 16}a^{11}+\frac{20\cdots 29}{23\cdots 72}a^{10}+\frac{92\cdots 77}{23\cdots 72}a^{9}-\frac{66\cdots 25}{69\cdots 16}a^{8}-\frac{36\cdots 79}{52\cdots 37}a^{7}-\frac{17\cdots 81}{58\cdots 93}a^{6}-\frac{65\cdots 85}{99\cdots 88}a^{5}-\frac{17\cdots 83}{20\cdots 48}a^{4}-\frac{63\cdots 47}{11\cdots 86}a^{3}-\frac{22\cdots 13}{25\cdots 08}a^{2}+\frac{58\cdots 34}{71\cdots 53}a+\frac{22\cdots 52}{79\cdots 17}$, $\frac{36\cdots 79}{10\cdots 74}a^{19}-\frac{92\cdots 91}{11\cdots 86}a^{18}-\frac{63\cdots 25}{69\cdots 16}a^{17}-\frac{14\cdots 31}{10\cdots 74}a^{16}+\frac{22\cdots 67}{23\cdots 72}a^{15}+\frac{17\cdots 95}{34\cdots 58}a^{14}-\frac{10\cdots 99}{23\cdots 72}a^{13}-\frac{14\cdots 63}{33\cdots 96}a^{12}-\frac{68\cdots 43}{69\cdots 16}a^{11}+\frac{78\cdots 24}{58\cdots 93}a^{10}+\frac{72\cdots 41}{11\cdots 86}a^{9}-\frac{46\cdots 57}{69\cdots 16}a^{8}-\frac{22\cdots 77}{20\cdots 48}a^{7}-\frac{54\cdots 93}{11\cdots 86}a^{6}-\frac{73\cdots 41}{69\cdots 16}a^{5}-\frac{14\cdots 17}{10\cdots 74}a^{4}-\frac{14\cdots 99}{16\cdots 98}a^{3}-\frac{56\cdots 57}{36\cdots 44}a^{2}+\frac{31\cdots 95}{23\cdots 51}a+\frac{37\cdots 84}{79\cdots 17}$, $\frac{67\cdots 41}{10\cdots 74}a^{19}-\frac{73\cdots 51}{25\cdots 08}a^{18}-\frac{15\cdots 41}{99\cdots 88}a^{17}+\frac{86\cdots 39}{10\cdots 74}a^{16}+\frac{39\cdots 07}{23\cdots 72}a^{15}+\frac{93\cdots 75}{17\cdots 79}a^{14}-\frac{70\cdots 71}{83\cdots 99}a^{13}-\frac{13\cdots 37}{23\cdots 72}a^{12}+\frac{14\cdots 33}{17\cdots 79}a^{11}+\frac{50\cdots 69}{23\cdots 72}a^{10}+\frac{16\cdots 41}{23\cdots 72}a^{9}-\frac{19\cdots 32}{17\cdots 79}a^{8}-\frac{83\cdots 99}{52\cdots 37}a^{7}-\frac{11\cdots 76}{19\cdots 31}a^{6}-\frac{75\cdots 51}{69\cdots 16}a^{5}-\frac{24\cdots 97}{20\cdots 48}a^{4}-\frac{49\cdots 61}{77\cdots 24}a^{3}-\frac{16\cdots 89}{36\cdots 44}a^{2}+\frac{29\cdots 97}{28\cdots 12}a+\frac{22\cdots 11}{79\cdots 17}$, $\frac{27\cdots 36}{52\cdots 37}a^{19}-\frac{24\cdots 79}{16\cdots 98}a^{18}-\frac{23\cdots 86}{17\cdots 79}a^{17}-\frac{68\cdots 36}{52\cdots 37}a^{16}+\frac{33\cdots 19}{23\cdots 72}a^{15}+\frac{22\cdots 37}{34\cdots 58}a^{14}-\frac{15\cdots 21}{23\cdots 72}a^{13}-\frac{70\cdots 47}{11\cdots 86}a^{12}+\frac{61\cdots 63}{69\cdots 16}a^{11}+\frac{46\cdots 59}{23\cdots 72}a^{10}+\frac{19\cdots 93}{23\cdots 72}a^{9}-\frac{58\cdots 23}{17\cdots 79}a^{8}-\frac{15\cdots 73}{10\cdots 74}a^{7}-\frac{14\cdots 51}{23\cdots 72}a^{6}-\frac{13\cdots 11}{99\cdots 88}a^{5}-\frac{12\cdots 24}{74\cdots 91}a^{4}-\frac{26\cdots 93}{23\cdots 72}a^{3}-\frac{18\cdots 63}{10\cdots 79}a^{2}+\frac{11\cdots 33}{71\cdots 53}a+\frac{18\cdots 55}{31\cdots 68}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 8321502208490000 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{4}\cdot 8321502208490000 \cdot 2}{2\cdot\sqrt{41041796771414445392922107616798059242325016576}}\cr\approx \mathstrut & 0.262221303186952 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^20 - 264*x^18 - 976*x^17 + 26874*x^16 + 202704*x^15 - 909396*x^14 - 15075000*x^13 - 30990747*x^12 + 380528352*x^11 + 2672674146*x^10 + 3920991528*x^9 - 30769064512*x^8 - 203355815760*x^7 - 607022085426*x^6 - 1074952849288*x^5 - 1143465755040*x^4 - 636507402480*x^3 - 64156438152*x^2 + 99783624600*x + 31046369877) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^20 - 264*x^18 - 976*x^17 + 26874*x^16 + 202704*x^15 - 909396*x^14 - 15075000*x^13 - 30990747*x^12 + 380528352*x^11 + 2672674146*x^10 + 3920991528*x^9 - 30769064512*x^8 - 203355815760*x^7 - 607022085426*x^6 - 1074952849288*x^5 - 1143465755040*x^4 - 636507402480*x^3 - 64156438152*x^2 + 99783624600*x + 31046369877, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 264*x^18 - 976*x^17 + 26874*x^16 + 202704*x^15 - 909396*x^14 - 15075000*x^13 - 30990747*x^12 + 380528352*x^11 + 2672674146*x^10 + 3920991528*x^9 - 30769064512*x^8 - 203355815760*x^7 - 607022085426*x^6 - 1074952849288*x^5 - 1143465755040*x^4 - 636507402480*x^3 - 64156438152*x^2 + 99783624600*x + 31046369877); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 264*x^18 - 976*x^17 + 26874*x^16 + 202704*x^15 - 909396*x^14 - 15075000*x^13 - 30990747*x^12 + 380528352*x^11 + 2672674146*x^10 + 3920991528*x^9 - 30769064512*x^8 - 203355815760*x^7 - 607022085426*x^6 - 1074952849288*x^5 - 1143465755040*x^4 - 636507402480*x^3 - 64156438152*x^2 + 99783624600*x + 31046369877); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^{10}.C_3^4:S_5$ (as 20T1035):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 9953280
The 108 conjugacy class representatives for $C_2^{10}.C_3^4:S_5$
Character table for $C_2^{10}.C_3^4:S_5$

Intermediate fields

5.3.4511.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 30 siblings: data not computed
Degree 40 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.10.0.1}{10} }^{2}$ ${\href{/padicField/7.5.0.1}{5} }^{4}$ ${\href{/padicField/11.9.0.1}{9} }{,}\,{\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ R ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.9.0.1}{9} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.10.0.1}{10} }^{2}$ ${\href{/padicField/31.8.0.1}{8} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ ${\href{/padicField/43.10.0.1}{10} }^{2}$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.9.0.1}{9} }{,}\,{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.5.4.30a10.2$x^{20} + 6 x^{17} + 6 x^{15} + 12 x^{14} + 24 x^{12} + 10 x^{11} + 14 x^{10} + 30 x^{9} + 3 x^{8} + 34 x^{7} + 12 x^{6} + 14 x^{5} + 20 x^{4} + 16 x^{2} + 4 x + 7$$4$$5$$30$20T74not computed
\(3\) Copy content Toggle raw display 3.5.1.0a1.1$x^{5} + 2 x + 1$$1$$5$$0$$C_5$$$[\ ]^{5}$$
3.5.3.20a46.3$x^{15} + 6 x^{14} + 3 x^{13} + 6 x^{12} + 9 x^{11} + 33 x^{10} + 24 x^{9} + 30 x^{8} + 36 x^{7} + 66 x^{6} + 51 x^{5} + 42 x^{4} + 47 x^{3} + 54 x^{2} + 51 x + 10$$3$$5$$20$15T26$$[2, 2, 2, 2]^{5}$$
\(13\) Copy content Toggle raw display $\Q_{13}$$x + 11$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{13}$$x + 11$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{13}$$x + 11$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{13}$$x + 11$$1$$1$$0$Trivial$$[\ ]$$
13.2.1.0a1.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
13.1.2.1a1.2$x^{2} + 26$$2$$1$$1$$C_2$$$[\ ]_{2}$$
13.3.2.3a1.1$x^{6} + 4 x^{4} + 22 x^{3} + 4 x^{2} + 57 x + 121$$2$$3$$3$$C_6$$$[\ ]_{2}^{3}$$
13.6.1.0a1.1$x^{6} + 10 x^{3} + 11 x^{2} + 11 x + 2$$1$$6$$0$$C_6$$$[\ ]^{6}$$
\(347\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
Deg $2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
Deg $2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $6$$1$$6$$0$$C_6$$$[\ ]^{6}$$
Deg $6$$2$$3$$3$
\(5145233\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
Deg $2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
Deg $4$$2$$2$$2$
Deg $6$$1$$6$$0$$C_6$$$[\ ]^{6}$$
Deg $6$$1$$6$$0$$C_6$$$[\ ]^{6}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)