Properties

Label 2.5.4.30a10.2
Base \(\Q_{2}\)
Degree \(20\)
e \(4\)
f \(5\)
c \(30\)
Galois group $C_2^5:C_{10}$ (as 20T74)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{5} + x^{2} + 1 )^{4} + \left(2 x^{2} + 2\right) ( x^{5} + x^{2} + 1 )^{3} + 2 ( x^{5} + x^{2} + 1 )^{2} + 4 x + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $20$
Ramification index $e$: $4$
Residue field degree $f$: $5$
Discriminant exponent $c$: $30$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2^2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 2]$
Visible Swan slopes:$[1,1]$
Means:$\langle\frac{1}{2}, \frac{3}{4}\rangle$
Rams:$(1, 1)$
Jump set:$[1, 2, 7]$
Roots of unity:$62 = (2^{ 5 } - 1) \cdot 2$

Intermediate fields

2.5.1.0a1.1, 2.5.2.10a2.2, 2.5.2.10a6.1, 2.5.2.10a4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.5.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{5} + x^{2} + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + \left(2 t^{4} + 2\right) x^{3} + 2 x^{2} + 4 t^{2} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^3 + (t^3 + t^2 + 1) z + (t^4 + t + 1)$
Associated inertia:$1$
Indices of inseparability:$[3, 2, 0]$

Invariants of the Galois closure

Galois degree: $320$
Galois group: $C_2^5:C_{10}$ (as 20T74)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed