Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $74$ | |
| Group : | $C_2^2\times C_2^4:C_5$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,17,13,10,5,2,18,14,9,6)(3,20,15,11,7,4,19,16,12,8), (3,4)(5,16)(6,15)(7,17)(8,18)(9,20)(10,19)(13,14) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 5: $C_5$ 10: $C_{10}$ x 3 20: 20T3 80: $C_2^4 : C_5$ 160: $C_2 \times (C_2^4 : C_5)$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: $C_5$
Degree 10: $C_2 \times (C_2^4 : C_5)$ x 3
Low degree siblings
20T72 x 6, 20T74 x 35, 20T86 x 9, 40T202 x 3, 40T274 x 72, 40T275 x 36, 40T276 x 36, 40T277 x 18, 40T278 x 18, 40T292 x 9Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 7,17)( 8,18)( 9,19)(10,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 5,16)( 6,15)( 7, 8)( 9,19)(10,20)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3, 4)( 7, 8)( 9,20)(10,19)(13,14)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3, 4)( 7,18)( 8,17)( 9,10)(13,14)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3, 4)( 5,16)( 6,15)( 7,17)( 8,18)( 9,20)(10,19)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3,13)( 4,14)( 5, 6)( 7,17)( 8,18)( 9,20)(10,19)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3,13)( 4,14)( 5,15)( 6,16)( 7, 8)( 9,20)(10,19)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3,13)( 4,14)( 5,15)( 6,16)( 7,18)( 8,17)( 9,10)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3,14)( 4,13)( 5, 6)( 7, 8)( 9,19)(10,20)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3,14)( 4,13)( 5,15)( 6,16)( 7,17)( 8,18)( 9,19)(10,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,18)( 8,17)( 9,20)(10,19)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 2)( 3,13)( 4,14)( 5,16)( 6,15)( 7,18)( 8,17)( 9,20)(10,19)(11,12)$ |
| $ 10, 10 $ | $16$ | $10$ | $( 1, 3, 5, 7, 9,12,13,15,18,19)( 2, 4, 6, 8,10,11,14,16,17,20)$ |
| $ 10, 10 $ | $16$ | $10$ | $( 1, 3, 5, 7,20,11,14,16,17, 9)( 2, 4, 6, 8,19,12,13,15,18,10)$ |
| $ 10, 10 $ | $16$ | $10$ | $( 1, 3, 6, 8, 9, 2, 4, 5, 7,10)(11,14,15,18,20,12,13,16,17,19)$ |
| $ 5, 5, 5, 5 $ | $16$ | $5$ | $( 1, 3, 6, 8,20)( 2, 4, 5, 7,19)( 9,11,14,15,18)(10,12,13,16,17)$ |
| $ 10, 10 $ | $16$ | $10$ | $( 1, 5, 9, 3, 7, 2, 6,10, 4, 8)(11,16,20,14,17,12,15,19,13,18)$ |
| $ 5, 5, 5, 5 $ | $16$ | $5$ | $( 1, 5, 9,13,18)( 2, 6,10,14,17)( 3, 7,12,15,19)( 4, 8,11,16,20)$ |
| $ 10, 10 $ | $16$ | $10$ | $( 1, 5, 9,14,18,12,15,19, 4, 7)( 2, 6,10,13,17,11,16,20, 3, 8)$ |
| $ 10, 10 $ | $16$ | $10$ | $( 1, 5, 9, 4, 7,11,16,20,13,17)( 2, 6,10, 3, 8,12,15,19,14,18)$ |
| $ 10, 10 $ | $16$ | $10$ | $( 1, 7, 3, 9,15,11,17,14,20, 6)( 2, 8, 4,10,16,12,18,13,19, 5)$ |
| $ 10, 10 $ | $16$ | $10$ | $( 1, 7,14,20,16,12,18, 4,10, 6)( 2, 8,13,19,15,11,17, 3, 9, 5)$ |
| $ 5, 5, 5, 5 $ | $16$ | $5$ | $( 1, 7, 4, 9, 6)( 2, 8, 3,10, 5)(11,17,13,20,15)(12,18,14,19,16)$ |
| $ 10, 10 $ | $16$ | $10$ | $( 1, 7,13,20, 5, 2, 8,14,19, 6)( 3,10,15,11,17, 4, 9,16,12,18)$ |
| $ 10, 10 $ | $16$ | $10$ | $( 1, 9,17,16,14,11,20, 7, 5, 3)( 2,10,18,15,13,12,19, 8, 6, 4)$ |
| $ 10, 10 $ | $16$ | $10$ | $( 1, 9, 8,15,13,12,19,17, 5, 3)( 2,10, 7,16,14,11,20,18, 6, 4)$ |
| $ 5, 5, 5, 5 $ | $16$ | $5$ | $( 1, 9, 7, 6, 4)( 2,10, 8, 5, 3)(11,20,17,15,13)(12,19,18,16,14)$ |
| $ 10, 10 $ | $16$ | $10$ | $( 1, 9,18, 5, 3, 2,10,17, 6, 4)( 7,15,13,11,20, 8,16,14,12,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,11)( 2,12)( 3,14)( 4,13)( 5,16)( 6,15)( 7,17)( 8,18)( 9,20)(10,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2,11)( 3,13)( 4,14)( 5,15)( 6,16)( 7,18)( 8,17)( 9,19)(10,20)$ |
Group invariants
| Order: | $320=2^{6} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [320, 1637] |
| Character table: Data not available. |