\\ Pari/GP code for working with number field 20.12.41041796771414445392922107616798059242325016576.1. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^20 - 264*y^18 - 976*y^17 + 26874*y^16 + 202704*y^15 - 909396*y^14 - 15075000*y^13 - 30990747*y^12 + 380528352*y^11 + 2672674146*y^10 + 3920991528*y^9 - 30769064512*y^8 - 203355815760*y^7 - 607022085426*y^6 - 1074952849288*y^5 - 1143465755040*y^4 - 636507402480*y^3 - 64156438152*y^2 + 99783624600*y + 31046369877, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^20 - 264*x^18 - 976*x^17 + 26874*x^16 + 202704*x^15 - 909396*x^14 - 15075000*x^13 - 30990747*x^12 + 380528352*x^11 + 2672674146*x^10 + 3920991528*x^9 - 30769064512*x^8 - 203355815760*x^7 - 607022085426*x^6 - 1074952849288*x^5 - 1143465755040*x^4 - 636507402480*x^3 - 64156438152*x^2 + 99783624600*x + 31046369877, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(b)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])