Normalized defining polynomial
\( x^{18} - 6 x^{17} + 14 x^{16} - 12 x^{15} + 144 x^{13} - 335 x^{12} + 900 x^{11} - 1050 x^{10} + \cdots - 27 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[2, 8]$ |
| |
| Discriminant: |
\(1115906277282951168000000000000\)
\(\medspace = 2^{24}\cdot 3^{9}\cdot 5^{12}\cdot 7^{12}\)
|
| |
| Root discriminant: | \(46.70\) |
| |
| Galois root discriminant: | $2^{4/3}3^{1/2}5^{2/3}7^{2/3}\approx 46.69954520953564$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{3}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{123}a^{14}+\frac{16}{41}a^{13}-\frac{13}{123}a^{12}-\frac{19}{41}a^{11}-\frac{9}{41}a^{10}-\frac{8}{41}a^{9}-\frac{11}{123}a^{8}-\frac{13}{41}a^{7}-\frac{2}{41}a^{6}+\frac{50}{123}a^{4}-\frac{6}{41}a^{3}-\frac{14}{123}a^{2}+\frac{8}{41}a+\frac{4}{41}$, $\frac{1}{1599}a^{15}+\frac{4}{1599}a^{14}-\frac{772}{1599}a^{13}+\frac{23}{1599}a^{12}-\frac{34}{533}a^{11}+\frac{142}{533}a^{10}-\frac{185}{1599}a^{9}-\frac{170}{1599}a^{8}+\frac{6}{41}a^{7}-\frac{158}{533}a^{6}+\frac{419}{1599}a^{5}-\frac{250}{1599}a^{4}-\frac{329}{1599}a^{3}+\frac{517}{1599}a^{2}-\frac{61}{533}a-\frac{12}{533}$, $\frac{1}{897039}a^{16}+\frac{1}{17589}a^{15}+\frac{521}{897039}a^{14}-\frac{47174}{299013}a^{13}+\frac{7444}{27183}a^{12}+\frac{3046}{7667}a^{11}-\frac{229061}{897039}a^{10}+\frac{136912}{299013}a^{9}+\frac{17348}{299013}a^{8}+\frac{116530}{299013}a^{7}-\frac{393061}{897039}a^{6}-\frac{80398}{299013}a^{5}-\frac{163100}{897039}a^{4}+\frac{14429}{99671}a^{3}+\frac{12509}{99671}a^{2}-\frac{18800}{99671}a-\frac{37979}{99671}$, $\frac{1}{62\cdots 97}a^{17}+\frac{1020675559}{62\cdots 97}a^{16}+\frac{1265987400779}{62\cdots 97}a^{15}+\frac{21572351785199}{62\cdots 97}a^{14}-\frac{400656381002309}{20\cdots 99}a^{13}+\frac{77429511719360}{692168241955333}a^{12}+\frac{17\cdots 22}{62\cdots 97}a^{11}-\frac{20\cdots 67}{62\cdots 97}a^{10}-\frac{177402729942247}{20\cdots 99}a^{9}-\frac{814603322678044}{20\cdots 99}a^{8}-\frac{21\cdots 76}{62\cdots 97}a^{7}-\frac{22\cdots 64}{62\cdots 97}a^{6}+\frac{21\cdots 95}{62\cdots 97}a^{5}+\frac{21\cdots 79}{62\cdots 97}a^{4}+\frac{96586800843881}{20\cdots 99}a^{3}-\frac{29123844934163}{188773156896909}a^{2}-\frac{329276049792087}{692168241955333}a+\frac{142874608006781}{692168241955333}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | $C_{6}$, which has order $6$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{6}$, which has order $12$ (assuming GRH) |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{415536079706945}{692168241955333}a^{17}-\frac{63\cdots 16}{20\cdots 99}a^{16}+\frac{11\cdots 85}{20\cdots 99}a^{15}-\frac{24186871405457}{11104303346877}a^{14}-\frac{40\cdots 78}{20\cdots 99}a^{13}+\frac{58\cdots 05}{692168241955333}a^{12}-\frac{87\cdots 40}{692168241955333}a^{11}+\frac{88\cdots 34}{20\cdots 99}a^{10}-\frac{52\cdots 44}{20\cdots 99}a^{9}+\frac{45\cdots 93}{692168241955333}a^{8}+\frac{62\cdots 42}{53243710919641}a^{7}+\frac{88\cdots 91}{122147336815647}a^{6}+\frac{28\cdots 97}{20\cdots 99}a^{5}-\frac{10\cdots 95}{20\cdots 99}a^{4}-\frac{58\cdots 13}{159731132758923}a^{3}+\frac{19\cdots 44}{692168241955333}a^{2}-\frac{21\cdots 19}{40715778938549}a+\frac{12\cdots 01}{692168241955333}$, $\frac{17068241995945}{692168241955333}a^{17}-\frac{228030052237067}{20\cdots 99}a^{16}+\frac{314375025697589}{20\cdots 99}a^{15}+\frac{9323113900829}{159731132758923}a^{14}-\frac{257696307828170}{20\cdots 99}a^{13}+\frac{23\cdots 53}{692168241955333}a^{12}-\frac{19\cdots 08}{692168241955333}a^{11}+\frac{29\cdots 44}{20\cdots 99}a^{10}+\frac{20\cdots 40}{20\cdots 99}a^{9}+\frac{14\cdots 85}{692168241955333}a^{8}+\frac{15\cdots 18}{692168241955333}a^{7}+\frac{17\cdots 71}{20\cdots 99}a^{6}+\frac{16\cdots 53}{20\cdots 99}a^{5}-\frac{34\cdots 16}{20\cdots 99}a^{4}-\frac{53\cdots 67}{188773156896909}a^{3}+\frac{70617779533116}{692168241955333}a^{2}+\frac{32\cdots 03}{692168241955333}a+\frac{4482868923035}{53243710919641}$, $\frac{891903124789982}{62\cdots 97}a^{17}-\frac{270817945303102}{366442010446941}a^{16}+\frac{86\cdots 11}{62\cdots 97}a^{15}-\frac{34\cdots 68}{62\cdots 97}a^{14}-\frac{983580890417980}{20\cdots 99}a^{13}+\frac{14\cdots 66}{692168241955333}a^{12}-\frac{17\cdots 58}{566319470690727}a^{11}+\frac{64\cdots 64}{62\cdots 97}a^{10}-\frac{13\cdots 30}{20\cdots 99}a^{9}+\frac{10\cdots 56}{692168241955333}a^{8}+\frac{13\cdots 76}{566319470690727}a^{7}+\frac{90\cdots 30}{62\cdots 97}a^{6}+\frac{18\cdots 98}{62\cdots 97}a^{5}-\frac{68\cdots 62}{566319470690727}a^{4}-\frac{58\cdots 27}{692168241955333}a^{3}+\frac{14\cdots 08}{20\cdots 99}a^{2}-\frac{88\cdots 48}{692168241955333}a+\frac{193695003411521}{40715778938549}$, $\frac{144488927611882}{151939370185317}a^{17}-\frac{33\cdots 13}{692168241955333}a^{16}+\frac{57\cdots 32}{62\cdots 97}a^{15}-\frac{75\cdots 11}{20\cdots 99}a^{14}-\frac{64\cdots 51}{20\cdots 99}a^{13}+\frac{27\cdots 53}{20\cdots 99}a^{12}-\frac{12\cdots 73}{62\cdots 97}a^{11}+\frac{14\cdots 00}{20\cdots 99}a^{10}-\frac{29\cdots 57}{692168241955333}a^{9}+\frac{72\cdots 22}{692168241955333}a^{8}+\frac{99\cdots 12}{62\cdots 97}a^{7}+\frac{20\cdots 53}{20\cdots 99}a^{6}+\frac{12\cdots 11}{62\cdots 97}a^{5}-\frac{16\cdots 13}{20\cdots 99}a^{4}-\frac{11\cdots 78}{20\cdots 99}a^{3}+\frac{96\cdots 79}{20\cdots 99}a^{2}-\frac{59\cdots 15}{692168241955333}a+\frac{21\cdots 30}{692168241955333}$, $\frac{817524365}{53084457547}a^{17}-\frac{13147860205}{159253372641}a^{16}+\frac{26316097006}{159253372641}a^{15}-\frac{15111959120}{159253372641}a^{14}-\frac{3230122129}{159253372641}a^{13}+\frac{114854913143}{53084457547}a^{12}-\frac{200353651318}{53084457547}a^{11}+\frac{1880273764388}{159253372641}a^{10}-\frac{1530431741447}{159253372641}a^{9}+\frac{1005827907704}{53084457547}a^{8}-\frac{3779876184}{1294742867}a^{7}+\frac{258116926207}{159253372641}a^{6}+\frac{28946501729}{159253372641}a^{5}-\frac{2582275527181}{159253372641}a^{4}-\frac{1222759581359}{159253372641}a^{3}+\frac{414852899238}{53084457547}a^{2}-\frac{71915466701}{53084457547}a+\frac{14034302383}{53084457547}$, $\frac{39\cdots 04}{62\cdots 97}a^{17}-\frac{21\cdots 53}{692168241955333}a^{16}+\frac{34\cdots 92}{62\cdots 97}a^{15}-\frac{32\cdots 32}{20\cdots 99}a^{14}-\frac{43\cdots 05}{20\cdots 99}a^{13}+\frac{18\cdots 94}{20\cdots 99}a^{12}-\frac{44\cdots 41}{366442010446941}a^{11}+\frac{91\cdots 77}{20\cdots 99}a^{10}-\frac{38\cdots 09}{188773156896909}a^{9}+\frac{47\cdots 39}{692168241955333}a^{8}+\frac{14\cdots 73}{62\cdots 97}a^{7}+\frac{30\cdots 14}{20\cdots 99}a^{6}+\frac{11\cdots 55}{62\cdots 97}a^{5}-\frac{10\cdots 61}{20\cdots 99}a^{4}-\frac{31\cdots 31}{692168241955333}a^{3}+\frac{32\cdots 96}{159731132758923}a^{2}-\frac{27\cdots 27}{53243710919641}a+\frac{86\cdots 94}{692168241955333}$, $\frac{17\cdots 30}{20\cdots 99}a^{17}-\frac{20\cdots 52}{479193398276769}a^{16}+\frac{56\cdots 36}{692168241955333}a^{15}-\frac{20\cdots 24}{62\cdots 97}a^{14}-\frac{33\cdots 75}{122147336815647}a^{13}+\frac{63\cdots 64}{53243710919641}a^{12}-\frac{37\cdots 57}{20\cdots 99}a^{11}+\frac{37\cdots 55}{62\cdots 97}a^{10}-\frac{25\cdots 79}{692168241955333}a^{9}+\frac{19\cdots 73}{20\cdots 99}a^{8}+\frac{95\cdots 95}{692168241955333}a^{7}+\frac{53\cdots 10}{62\cdots 97}a^{6}+\frac{37\cdots 13}{20\cdots 99}a^{5}-\frac{45\cdots 20}{62\cdots 97}a^{4}-\frac{10\cdots 67}{20\cdots 99}a^{3}+\frac{85\cdots 94}{20\cdots 99}a^{2}-\frac{52\cdots 01}{692168241955333}a+\frac{18\cdots 32}{692168241955333}$, $\frac{165545487382078}{62\cdots 97}a^{17}-\frac{26413126242943}{188773156896909}a^{16}+\frac{16\cdots 80}{62\cdots 97}a^{15}-\frac{62036611080949}{692168241955333}a^{14}-\frac{337780030619935}{20\cdots 99}a^{13}+\frac{79\cdots 92}{20\cdots 99}a^{12}-\frac{38\cdots 86}{62\cdots 97}a^{11}+\frac{12\cdots 34}{692168241955333}a^{10}-\frac{25\cdots 18}{20\cdots 99}a^{9}+\frac{43\cdots 04}{188773156896909}a^{8}+\frac{42\cdots 82}{62\cdots 97}a^{7}-\frac{868773811844896}{62924385632303}a^{6}+\frac{61\cdots 08}{62\cdots 97}a^{5}-\frac{39\cdots 85}{122147336815647}a^{4}-\frac{93\cdots 68}{692168241955333}a^{3}+\frac{53\cdots 91}{20\cdots 99}a^{2}-\frac{217096978138779}{62924385632303}a+\frac{11\cdots 17}{692168241955333}$, $\frac{87395385399743}{479193398276769}a^{17}-\frac{443591422008884}{479193398276769}a^{16}+\frac{796852420347928}{479193398276769}a^{15}-\frac{217670979466366}{479193398276769}a^{14}-\frac{134955349342399}{159731132758923}a^{13}+\frac{242144130517913}{9395948985819}a^{12}-\frac{16\cdots 82}{43563036206979}a^{11}+\frac{59\cdots 18}{479193398276769}a^{10}-\frac{10\cdots 51}{159731132758923}a^{9}+\frac{28\cdots 24}{159731132758923}a^{8}+\frac{23\cdots 54}{43563036206979}a^{7}-\frac{76875269272495}{479193398276769}a^{6}+\frac{16\cdots 73}{479193398276769}a^{5}-\frac{66\cdots 85}{43563036206979}a^{4}-\frac{66\cdots 19}{53243710919641}a^{3}+\frac{386276050515896}{3895881286803}a^{2}+\frac{314928330806183}{53243710919641}a-\frac{282985004427882}{53243710919641}$
|
| |
| Regulator: | \( 48971143.43571596 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{8}\cdot 48971143.43571596 \cdot 6}{2\cdot\sqrt{1115906277282951168000000000000}}\cr\approx \mathstrut & 1.35128382160755 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_6:S_3$ |
| Character table for $C_6:S_3$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), 3.1.3675.1, 3.1.588.1, 3.1.14700.1, 3.1.300.1, 6.2.16595712.3, 6.2.2593080000.5, 6.2.10372320000.2, 6.2.4320000.2, 9.1.9529569000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | 18.0.371968759094317056000000000000.1 |
| Minimal sibling: | 18.0.371968759094317056000000000000.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/padicField/11.2.0.1}{2} }^{8}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.3.0.1}{3} }^{6}$ | ${\href{/padicField/17.2.0.1}{2} }^{9}$ | ${\href{/padicField/19.6.0.1}{6} }^{3}$ | ${\href{/padicField/23.2.0.1}{2} }^{8}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{9}$ | ${\href{/padicField/31.6.0.1}{6} }^{3}$ | ${\href{/padicField/37.3.0.1}{3} }^{6}$ | ${\href{/padicField/41.2.0.1}{2} }^{9}$ | ${\href{/padicField/43.6.0.1}{6} }^{3}$ | ${\href{/padicField/47.2.0.1}{2} }^{8}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{9}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.6.8a1.2 | $x^{6} + 2 x^{3} + 6$ | $6$ | $1$ | $8$ | $D_{6}$ | $$[2]_{3}^{2}$$ |
| 2.2.6.16a1.5 | $x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 143 x^{6} + 132 x^{5} + 102 x^{4} + 64 x^{3} + 33 x^{2} + 12 x + 5$ | $6$ | $2$ | $16$ | $D_6$ | $$[2]_{3}^{2}$$ | |
|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(5\)
| 5.2.3.4a1.2 | $x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 48 x + 13$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 5.2.3.4a1.2 | $x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 48 x + 13$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 5.2.3.4a1.2 | $x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 48 x + 13$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
|
\(7\)
| 7.6.3.12a1.3 | $x^{18} + 3 x^{16} + 15 x^{15} + 15 x^{14} + 48 x^{13} + 109 x^{12} + 171 x^{11} + 333 x^{10} + 497 x^{9} + 717 x^{8} + 1032 x^{7} + 1216 x^{6} + 1296 x^{5} + 1143 x^{4} + 783 x^{3} + 432 x^{2} + 162 x + 34$ | $3$ | $6$ | $12$ | $C_6 \times C_3$ | $$[\ ]_{3}^{6}$$ |