Normalized defining polynomial
\( x^{18} + x^{16} - 30x^{14} + 53x^{12} + 302x^{10} - 351x^{8} - 3179x^{6} + 6484x^{4} - 672x^{2} + 36 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[0, 9]$ |
| |
| Discriminant: |
\(-371968759094317056000000000000\)
\(\medspace = -\,2^{24}\cdot 3^{8}\cdot 5^{12}\cdot 7^{12}\)
|
| |
| Root discriminant: | \(43.93\) |
| |
| Galois root discriminant: | $2^{4/3}3^{1/2}5^{2/3}7^{2/3}\approx 46.69954520953564$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-1}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}-\frac{1}{3}a^{4}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{7}-\frac{1}{3}a^{5}+\frac{1}{3}a^{3}$, $\frac{1}{3}a^{8}+\frac{1}{3}a^{2}$, $\frac{1}{18}a^{9}-\frac{1}{6}a^{8}-\frac{1}{6}a^{6}+\frac{1}{3}a^{5}+\frac{1}{6}a^{4}-\frac{5}{18}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a$, $\frac{1}{18}a^{10}-\frac{1}{6}a^{8}-\frac{1}{6}a^{7}-\frac{1}{6}a^{6}+\frac{1}{6}a^{5}+\frac{2}{9}a^{4}-\frac{1}{6}a^{3}-\frac{1}{3}a^{2}$, $\frac{1}{18}a^{11}-\frac{1}{6}a^{7}+\frac{2}{9}a^{5}-\frac{1}{6}a^{3}$, $\frac{1}{18}a^{12}-\frac{1}{6}a^{8}-\frac{1}{9}a^{6}+\frac{1}{6}a^{4}-\frac{1}{3}a^{2}$, $\frac{1}{18}a^{13}-\frac{1}{6}a^{8}-\frac{1}{9}a^{7}-\frac{1}{6}a^{6}+\frac{1}{6}a^{5}+\frac{1}{6}a^{4}-\frac{1}{6}a^{3}-\frac{1}{3}a^{2}$, $\frac{1}{162}a^{14}+\frac{1}{81}a^{12}-\frac{1}{81}a^{10}-\frac{5}{162}a^{8}-\frac{1}{6}a^{7}+\frac{1}{81}a^{6}+\frac{1}{6}a^{5}+\frac{17}{81}a^{4}-\frac{1}{6}a^{3}-\frac{7}{27}a^{2}+\frac{2}{9}$, $\frac{1}{162}a^{15}+\frac{1}{81}a^{13}-\frac{1}{81}a^{11}+\frac{2}{81}a^{9}+\frac{1}{81}a^{7}-\frac{37}{81}a^{5}+\frac{25}{54}a^{3}-\frac{4}{9}a$, $\frac{1}{692950302}a^{16}+\frac{17287}{20998494}a^{14}-\frac{2078251}{230983434}a^{12}+\frac{3767470}{346475151}a^{10}-\frac{897806}{38497239}a^{8}-\frac{1}{6}a^{7}+\frac{15440011}{115491717}a^{6}+\frac{1}{6}a^{5}-\frac{3170810}{6537267}a^{4}-\frac{1}{6}a^{3}+\frac{2003774}{115491717}a^{2}-\frac{6132124}{38497239}$, $\frac{1}{1385900604}a^{17}+\frac{17287}{41996988}a^{15}+\frac{5377081}{230983434}a^{13}-\frac{30962299}{1385900604}a^{11}-\frac{448903}{38497239}a^{9}-\frac{33282043}{461966868}a^{7}-\frac{1}{6}a^{6}-\frac{2709805}{26149068}a^{5}+\frac{1}{6}a^{4}-\frac{36493465}{230983434}a^{3}-\frac{1}{6}a^{2}-\frac{3066062}{38497239}a$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | $C_{6}$, which has order $6$ (assuming GRH) |
| |
| Narrow class group: | $C_{6}$, which has order $6$ (assuming GRH) |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( \frac{58985}{5726862} a^{17} + \frac{32213}{2863431} a^{15} - \frac{880346}{2863431} a^{13} + \frac{2972891}{5726862} a^{11} + \frac{9009443}{2863431} a^{9} - \frac{19010893}{5726862} a^{7} - \frac{1184461}{36018} a^{5} + \frac{40668959}{636318} a^{3} - \frac{211279}{106053} a \)
(order $4$)
|
| |
| Fundamental units: |
$\frac{81205}{11947419}a^{16}+\frac{875}{120681}a^{14}-\frac{1620745}{7964946}a^{12}+\frac{4111004}{11947419}a^{10}+\frac{16496225}{7964946}a^{8}-\frac{8725055}{3982473}a^{6}-\frac{9822455}{450846}a^{4}+\frac{168878035}{3982473}a^{2}-\frac{2208359}{1327491}$, $\frac{3396185}{1385900604}a^{17}+\frac{73031}{23894838}a^{16}+\frac{404389}{125990964}a^{15}+\frac{2729}{724086}a^{14}-\frac{50917585}{692950302}a^{13}-\frac{360139}{3982473}a^{12}+\frac{48036155}{461966868}a^{11}+\frac{3341383}{23894838}a^{10}+\frac{274145660}{346475151}a^{9}+\frac{413492}{442497}a^{8}-\frac{866433005}{1385900604}a^{7}-\frac{3271843}{3982473}a^{6}-\frac{214902709}{26149068}a^{5}-\frac{2199394}{225423}a^{4}+\frac{3003106505}{230983434}a^{3}+\frac{137373809}{7964946}a^{2}+\frac{183016285}{38497239}a+\frac{578461}{1327491}$, $\frac{4930967}{1385900604}a^{17}-\frac{21415}{13074534}a^{16}+\frac{184441}{41996988}a^{15}-\frac{1625}{1188594}a^{14}-\frac{1355080}{12832413}a^{13}+\frac{329618}{6537267}a^{12}+\frac{226339843}{1385900604}a^{11}-\frac{405775}{4358178}a^{10}+\frac{127650361}{115491717}a^{9}-\frac{6685351}{13074534}a^{8}-\frac{149549419}{153988956}a^{7}+\frac{8475295}{13074534}a^{6}-\frac{299064197}{26149068}a^{5}+\frac{70863679}{13074534}a^{4}+\frac{2359212329}{115491717}a^{3}-\frac{47935667}{4358178}a^{2}+\frac{62152604}{38497239}a+\frac{107276}{726363}$, $\frac{9343403}{1385900604}a^{17}+\frac{21415}{13074534}a^{16}+\frac{864049}{125990964}a^{15}+\frac{1625}{1188594}a^{14}-\frac{69934706}{346475151}a^{13}-\frac{329618}{6537267}a^{12}+\frac{164366593}{461966868}a^{11}+\frac{405775}{4358178}a^{10}+\frac{707191520}{346475151}a^{9}+\frac{6685351}{13074534}a^{8}-\frac{3254691335}{1385900604}a^{7}-\frac{8475295}{13074534}a^{6}-\frac{560854489}{26149068}a^{5}-\frac{70863679}{13074534}a^{4}+\frac{10044407459}{230983434}a^{3}+\frac{47935667}{4358178}a^{2}-\frac{138846881}{38497239}a-\frac{833639}{726363}$, $\frac{521269}{38497239}a^{17}+\frac{2241329}{692950302}a^{16}+\frac{133528}{10499247}a^{15}+\frac{66622}{10499247}a^{14}-\frac{95339809}{230983434}a^{13}-\frac{9736561}{115491717}a^{12}+\frac{166377709}{230983434}a^{11}+\frac{39873653}{346475151}a^{10}+\frac{960610711}{230983434}a^{9}+\frac{36220421}{38497239}a^{8}-\frac{1143433873}{230983434}a^{7}-\frac{37483108}{115491717}a^{6}-\frac{193042129}{4358178}a^{5}-\frac{112266317}{13074534}a^{4}+\frac{6757959431}{76994478}a^{3}+\frac{1799746900}{115491717}a^{2}-\frac{18123068}{4277471}a-\frac{54068450}{38497239}$, $\frac{708823}{692950302}a^{17}+\frac{143309}{346475151}a^{16}+\frac{12115}{10499247}a^{15}+\frac{84373}{62995482}a^{14}-\frac{1117216}{38497239}a^{13}-\frac{6208097}{692950302}a^{12}+\frac{18577684}{346475151}a^{11}+\frac{9932143}{692950302}a^{10}+\frac{32669242}{115491717}a^{9}+\frac{99592007}{692950302}a^{8}-\frac{8463023}{38497239}a^{7}-\frac{60853415}{692950302}a^{6}-\frac{39291049}{13074534}a^{5}-\frac{609577}{1452726}a^{4}+\frac{619918160}{115491717}a^{3}+\frac{12696307}{12832413}a^{2}-\frac{8431105}{38497239}a-\frac{926657}{12832413}$, $\frac{7356743}{692950302}a^{17}+\frac{264785}{230983434}a^{16}+\frac{32129}{3499749}a^{15}+\frac{110315}{62995482}a^{14}-\frac{74132005}{230983434}a^{13}-\frac{22971385}{692950302}a^{12}+\frac{208499747}{346475151}a^{11}+\frac{14543939}{346475151}a^{10}+\frac{725980571}{230983434}a^{9}+\frac{122931836}{346475151}a^{8}-\frac{958893325}{230983434}a^{7}-\frac{37577264}{346475151}a^{6}-\frac{436206971}{13074534}a^{5}-\frac{23253488}{6537267}a^{4}+\frac{16855122107}{230983434}a^{3}+\frac{569955719}{115491717}a^{2}-\frac{587209913}{38497239}a+\frac{117724664}{38497239}$, $\frac{12167171}{346475151}a^{17}+\frac{2386315}{230983434}a^{16}+\frac{1188002}{31497741}a^{15}+\frac{364712}{31497741}a^{14}-\frac{363842662}{346475151}a^{13}-\frac{212721305}{692950302}a^{12}+\frac{1236415801}{692950302}a^{11}+\frac{355995839}{692950302}a^{10}+\frac{3716648986}{346475151}a^{9}+\frac{1084983547}{346475151}a^{8}-\frac{3975319228}{346475151}a^{7}-\frac{2279130179}{692950302}a^{6}-\frac{489847109}{4358178}a^{5}-\frac{213171529}{6537267}a^{4}+\frac{2810791639}{12832413}a^{3}+\frac{7338362950}{115491717}a^{2}-\frac{33416822}{4277471}a-\frac{140166737}{38497239}$
|
| |
| Regulator: | \( 37185048.62613057 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 37185048.62613057 \cdot 6}{4\cdot\sqrt{371968759094317056000000000000}}\cr\approx \mathstrut & 1.39580643139099 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_6:S_3$ |
| Character table for $C_6:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.588.1, 3.1.3675.1, 3.1.14700.1, 3.1.300.1, 6.0.5531904.1, 6.0.3457440000.3, 6.0.864360000.5, 6.0.1440000.1, 9.1.9529569000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | 18.2.1115906277282951168000000000000.1 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/padicField/11.2.0.1}{2} }^{9}$ | ${\href{/padicField/13.3.0.1}{3} }^{6}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{3}$ | ${\href{/padicField/23.2.0.1}{2} }^{9}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{3}$ | ${\href{/padicField/37.3.0.1}{3} }^{6}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }^{3}$ | ${\href{/padicField/47.2.0.1}{2} }^{9}$ | ${\href{/padicField/53.2.0.1}{2} }^{8}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.6.8a1.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $$[2]_{3}^{2}$$ |
| 2.2.6.16a1.5 | $x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 143 x^{6} + 132 x^{5} + 102 x^{4} + 64 x^{3} + 33 x^{2} + 12 x + 5$ | $6$ | $2$ | $16$ | $D_6$ | $$[2]_{3}^{2}$$ | |
|
\(3\)
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(5\)
| 5.1.3.2a1.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 5.1.3.2a1.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 5.2.3.4a1.2 | $x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 48 x + 13$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 5.2.3.4a1.2 | $x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 48 x + 13$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
|
\(7\)
| 7.6.3.12a1.3 | $x^{18} + 3 x^{16} + 15 x^{15} + 15 x^{14} + 48 x^{13} + 109 x^{12} + 171 x^{11} + 333 x^{10} + 497 x^{9} + 717 x^{8} + 1032 x^{7} + 1216 x^{6} + 1296 x^{5} + 1143 x^{4} + 783 x^{3} + 432 x^{2} + 162 x + 34$ | $3$ | $6$ | $12$ | $C_6 \times C_3$ | $$[\ ]_{3}^{6}$$ |