Normalized defining polynomial
\( x^{18} + x^{16} - 30 x^{14} + 53 x^{12} + 302 x^{10} - 351 x^{8} - 3179 x^{6} + 6484 x^{4} - 672 x^{2} + 36 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-371968759094317056000000000000=-\,2^{24}\cdot 3^{8}\cdot 5^{12}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{2}$, $\frac{1}{18} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{5}{18} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{18} a^{10} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{2}{9} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{18} a^{11} - \frac{1}{6} a^{7} + \frac{2}{9} a^{5} - \frac{1}{6} a^{3}$, $\frac{1}{18} a^{12} - \frac{1}{6} a^{8} - \frac{1}{9} a^{6} + \frac{1}{6} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{18} a^{13} - \frac{1}{6} a^{8} - \frac{1}{9} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{162} a^{14} + \frac{1}{81} a^{12} - \frac{1}{81} a^{10} - \frac{5}{162} a^{8} - \frac{1}{6} a^{7} + \frac{1}{81} a^{6} + \frac{1}{6} a^{5} + \frac{17}{81} a^{4} - \frac{1}{6} a^{3} - \frac{7}{27} a^{2} + \frac{2}{9}$, $\frac{1}{162} a^{15} + \frac{1}{81} a^{13} - \frac{1}{81} a^{11} + \frac{2}{81} a^{9} + \frac{1}{81} a^{7} - \frac{37}{81} a^{5} + \frac{25}{54} a^{3} - \frac{4}{9} a$, $\frac{1}{692950302} a^{16} + \frac{17287}{20998494} a^{14} - \frac{2078251}{230983434} a^{12} + \frac{3767470}{346475151} a^{10} - \frac{897806}{38497239} a^{8} - \frac{1}{6} a^{7} + \frac{15440011}{115491717} a^{6} + \frac{1}{6} a^{5} - \frac{3170810}{6537267} a^{4} - \frac{1}{6} a^{3} + \frac{2003774}{115491717} a^{2} - \frac{6132124}{38497239}$, $\frac{1}{1385900604} a^{17} + \frac{17287}{41996988} a^{15} + \frac{5377081}{230983434} a^{13} - \frac{30962299}{1385900604} a^{11} - \frac{448903}{38497239} a^{9} - \frac{33282043}{461966868} a^{7} - \frac{1}{6} a^{6} - \frac{2709805}{26149068} a^{5} + \frac{1}{6} a^{4} - \frac{36493465}{230983434} a^{3} - \frac{1}{6} a^{2} - \frac{3066062}{38497239} a$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{58985}{5726862} a^{17} + \frac{32213}{2863431} a^{15} - \frac{880346}{2863431} a^{13} + \frac{2972891}{5726862} a^{11} + \frac{9009443}{2863431} a^{9} - \frac{19010893}{5726862} a^{7} - \frac{1184461}{36018} a^{5} + \frac{40668959}{636318} a^{3} - \frac{211279}{106053} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 37185048.62613057 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_3$ (as 18T12):
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_2\times C_3:S_3$ |
| Character table for $C_2\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.588.1, 3.1.3675.1, 3.1.14700.1, 3.1.300.1, 6.0.5531904.1, 6.0.3457440000.3, 6.0.864360000.5, 6.0.1440000.1, 9.1.9529569000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ |
| 2.12.16.13 | $x^{12} + 12 x^{10} + 12 x^{8} + 8 x^{6} + 32 x^{4} - 16 x^{2} + 16$ | $6$ | $2$ | $16$ | $D_6$ | $[2]_{3}^{2}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 7 | Data not computed | ||||||