Properties

Label 5.2.3.4a1.2
Base \(\Q_{5}\)
Degree \(6\)
e \(3\)
f \(2\)
c \(4\)
Galois group $S_3$ (as 6T2)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 4 x + 2 )^{3} + 5$ Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $6$
Ramification index $e$: $3$
Residue field degree $f$: $2$
Discriminant exponent $c$: $4$
Discriminant root field: $\Q_{5}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{5})$ $=$$\Gal(K/\Q_{5})$: $S_3$
This field is Galois over $\Q_{5}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$24 = (5^{ 2 } - 1)$

Intermediate fields

$\Q_{5}(\sqrt{2})$, 5.1.3.2a1.1 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{5}(\sqrt{2})$ $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{2} + 4 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + 5 \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 3 z + 3$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $6$
Galois group: $S_3$ (as 6T2)
Inertia group: Intransitive group isomorphic to $C_3$
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.6666666666666666$
Galois splitting model:$x^{6} - 3 x^{5} + x^{4} + 3 x^{3} + x^{2} - 3 x + 1$