Properties

Label 5.1.3.2a1.1
Base \(\Q_{5}\)
Degree \(3\)
e \(3\)
f \(1\)
c \(2\)
Galois group $S_3$ (as 3T2)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{3} + 5\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $3$
Ramification index $e$: $3$
Residue field degree $f$: $1$
Discriminant exponent $c$: $2$
Discriminant root field: $\Q_{5}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{5})$: $C_1$
This field is not Galois over $\Q_{5}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$4 = (5 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 5 }$.

Canonical tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial: \( x^{3} + 5 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 3 z + 3$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $6$
Galois group: $S_3$ (as 3T2)
Inertia group: $C_3$ (as 3T1)
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.6666666666666666$
Galois splitting model:$x^{3} - 5$