Properties

Label 7.6.3.12a1.3
Base \(\Q_{7}\)
Degree \(18\)
e \(3\)
f \(6\)
c \(12\)
Galois group $C_6 \times C_3$ (as 18T2)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3 )^{3} + 7$ Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $18$
Ramification index $e$: $3$
Residue field degree $f$: $6$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{7}(\sqrt{3})$
Root number: $1$
$\Aut(K/\Q_{7})$ $=$$\Gal(K/\Q_{7})$: $C_3\times C_6$
This field is Galois and abelian over $\Q_{7}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$117648 = (7^{ 6 } - 1)$

Intermediate fields

$\Q_{7}(\sqrt{3})$, 7.3.1.0a1.1, 7.1.3.2a1.2, 7.1.3.2a1.1, 7.1.3.2a1.3, 7.6.1.0a1.1, 7.2.3.4a1.3, 7.2.3.4a1.1, 7.2.3.4a1.2, 7.3.3.6a1.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:7.6.1.0a1.1 $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + 7 \) $\ \in\Q_{7}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 3 z + 3$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $18$
Galois group: $C_3\times C_6$ (as 18T2)
Inertia group: Intransitive group isomorphic to $C_3$
Wild inertia group: $C_1$
Galois unramified degree: $6$
Galois tame degree: $3$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.6666666666666666$
Galois splitting model:not computed