\\ Pari/GP code for working with number field 18.2.1115906277282951168000000000000.1. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^18 - 6*y^17 + 14*y^16 - 12*y^15 + 144*y^13 - 335*y^12 + 900*y^11 - 1050*y^10 + 1470*y^9 - 760*y^8 - 36*y^7 + 127*y^6 - 1038*y^5 + 132*y^4 + 990*y^3 - 504*y^2 + 108*y - 27, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 6*x^17 + 14*x^16 - 12*x^15 + 144*x^13 - 335*x^12 + 900*x^11 - 1050*x^10 + 1470*x^9 - 760*x^8 - 36*x^7 + 127*x^6 - 1038*x^5 + 132*x^4 + 990*x^3 - 504*x^2 + 108*x - 27, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(b)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])