Normalized defining polynomial
\( x^{18} - 146687112 x^{16} - 37892719296 x^{15} + \cdots + 93\!\cdots\!12 \)
Invariants
Degree: | $18$ |
| |
Signature: | $[18, 0]$ |
| |
Discriminant: |
\(389\!\cdots\!112\)
\(\medspace = 2^{60}\cdot 3^{28}\cdot 7^{9}\cdot 103^{6}\cdot 271^{6}\cdot 3030020153113^{6}\)
|
| |
Root discriminant: | \(6.465\times 10^{7}\) |
| |
Galois root discriminant: | not computed | ||
Ramified primes: |
\(2\), \(3\), \(7\), \(103\), \(271\), \(3030020153113\)
|
| |
Discriminant root field: | \(\Q(\sqrt{7}) \) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{6}a^{9}-\frac{1}{2}a+\frac{1}{3}$, $\frac{1}{6}a^{10}-\frac{1}{2}a^{2}+\frac{1}{3}a$, $\frac{1}{6}a^{11}-\frac{1}{2}a^{3}+\frac{1}{3}a^{2}$, $\frac{1}{12}a^{12}-\frac{1}{12}a^{11}-\frac{1}{12}a^{10}-\frac{1}{12}a^{9}+\frac{1}{4}a^{4}+\frac{5}{12}a^{3}+\frac{1}{12}a^{2}+\frac{1}{12}a+\frac{1}{3}$, $\frac{1}{12}a^{13}-\frac{1}{12}a^{9}+\frac{1}{4}a^{5}-\frac{1}{3}a^{4}-\frac{1}{4}a+\frac{1}{3}$, $\frac{1}{36}a^{14}+\frac{1}{36}a^{13}+\frac{1}{36}a^{12}-\frac{1}{36}a^{11}+\frac{1}{18}a^{10}+\frac{1}{18}a^{9}+\frac{1}{6}a^{8}+\frac{1}{6}a^{7}-\frac{1}{12}a^{6}-\frac{7}{36}a^{5}-\frac{7}{36}a^{4}+\frac{11}{36}a^{3}-\frac{2}{9}a^{2}+\frac{4}{9}a+\frac{4}{9}$, $\frac{1}{36}a^{15}+\frac{1}{36}a^{12}-\frac{1}{12}a^{10}+\frac{1}{36}a^{9}-\frac{1}{4}a^{7}-\frac{1}{9}a^{6}-\frac{1}{4}a^{4}-\frac{1}{9}a^{3}-\frac{1}{4}a^{2}+\frac{1}{12}a-\frac{1}{9}$, $\frac{1}{36}a^{16}+\frac{1}{36}a^{13}-\frac{1}{12}a^{11}+\frac{1}{36}a^{10}-\frac{1}{4}a^{8}-\frac{1}{9}a^{7}-\frac{1}{4}a^{5}-\frac{1}{9}a^{4}-\frac{1}{4}a^{3}+\frac{1}{12}a^{2}-\frac{1}{9}a$, $\frac{1}{15\cdots 56}a^{17}-\frac{23\cdots 83}{37\cdots 14}a^{16}-\frac{99\cdots 71}{75\cdots 28}a^{15}+\frac{60\cdots 97}{75\cdots 28}a^{14}+\frac{14\cdots 95}{83\cdots 92}a^{13}-\frac{68\cdots 25}{25\cdots 76}a^{12}+\frac{81\cdots 25}{12\cdots 38}a^{11}-\frac{13\cdots 55}{18\cdots 07}a^{10}+\frac{22\cdots 93}{75\cdots 28}a^{9}-\frac{13\cdots 32}{18\cdots 07}a^{8}+\frac{27\cdots 35}{75\cdots 28}a^{7}-\frac{30\cdots 27}{75\cdots 28}a^{6}-\frac{12\cdots 59}{57\cdots 56}a^{5}+\frac{44\cdots 55}{25\cdots 76}a^{4}-\frac{62\cdots 93}{12\cdots 38}a^{3}-\frac{29\cdots 21}{12\cdots 38}a^{2}-\frac{65\cdots 99}{15\cdots 56}a+\frac{68\cdots 23}{18\cdots 07}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | not computed |
| |
Narrow class group: | not computed |
|
Unit group
Rank: | $17$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: | not computed |
| |
Regulator: | not computed |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{18}\cdot(2\pi)^{0}\cdot R \cdot h}{2\cdot\sqrt{389573518709461277048874506777900581813141954677569649354154692963827395433931232826260909975966492327717495503836697626432438146795529306112}}\cr\mathstrut & \text{
Galois group
$C_3^4:Q_{16}:C_2$ (as 18T395):
A solvable group of order 2592 |
The 18 conjugacy class representatives for $C_3^4:Q_{16}:C_2$ |
Character table for $C_3^4:Q_{16}:C_2$ |
Intermediate fields
\(\Q(\sqrt{7}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 18 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 18.18.101021491785353943121599220466066134823210682447466364273131349270310608615239543822518099454441648990964464532520525902670902484365127865556516192905764809189134409473593787699116277131264798611980696259642050064514324642078790284827764457472.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }$ | R | ${\href{/padicField/11.8.0.1}{8} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.8.0.1}{8} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.4.0.1}{4} }^{4}{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.4.0.1}{4} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }^{3}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.8.0.1}{8} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.4.0.1}{4} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
2.1.16.58m1.524 | $x^{16} + 8 x^{15} + 4 x^{14} + 4 x^{12} + 8 x^{11} + 10 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ | $16$ | $1$ | $58$ | 16T50 | $$[2, 3, \frac{7}{2}, \frac{9}{2}]^{2}$$ | |
\(3\)
| 3.1.9.16a1.1 | $x^{9} + 3 x^{8} + 3$ | $9$ | $1$ | $16$ | $C_3^2:C_4$ | $$[2, 2]^{4}$$ |
3.1.9.12a1.1 | $x^{9} + 6 x^{4} + 3$ | $9$ | $1$ | $12$ | $C_3^2:C_4$ | $$[\frac{3}{2}, \frac{3}{2}]_{2}^{2}$$ | |
\(7\)
| 7.1.2.1a1.2 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
7.4.2.4a1.2 | $x^{8} + 10 x^{6} + 8 x^{5} + 31 x^{4} + 40 x^{3} + 46 x^{2} + 24 x + 16$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
7.4.2.4a1.2 | $x^{8} + 10 x^{6} + 8 x^{5} + 31 x^{4} + 40 x^{3} + 46 x^{2} + 24 x + 16$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
\(103\)
| $\Q_{103}$ | $x + 98$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
103.2.1.0a1.1 | $x^{2} + 102 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
103.2.1.0a1.1 | $x^{2} + 102 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
103.2.1.0a1.1 | $x^{2} + 102 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
103.2.1.0a1.1 | $x^{2} + 102 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
103.3.3.6a1.3 | $x^{9} + 6 x^{7} + 294 x^{6} + 12 x^{5} + 1176 x^{4} + 28820 x^{3} + 1176 x^{2} + 57624 x + 941295$ | $3$ | $3$ | $6$ | $C_3^2$ | $$[\ ]_{3}^{3}$$ | |
\(271\)
| $\Q_{271}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
Deg $3$ | $3$ | $1$ | $2$ | ||||
Deg $3$ | $3$ | $1$ | $2$ | ||||
Deg $3$ | $3$ | $1$ | $2$ | ||||
\(3030020153113\)
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
Deg $9$ | $3$ | $3$ | $6$ |