# Oscar code for working with number field 18.18.389573518709461277048874506777900581813141954677569649354154692963827395433931232826260909975966492327717495503836697626432438146795529306112.1. # If you have not already loaded the Oscar package, you should type "using Oscar;" before running the code below. # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 146687112*x^16 - 37892719296*x^15 + 8408618911888512*x^14 + 4325813678364681744*x^13 - 243604861180754026285992*x^12 - 192688273988213296086844512*x^11 + 3797668582351192771935287035158*x^10 + 4155203541072329873982601967541328*x^9 - 30824703601196378502940767667441818360*x^8 - 44117476415146499319729949379490251620992*x^7 + 112503359565037178406650855732715578314837728*x^6 + 209476226244754241024858216530145737787244951984*x^5 - 121787795931109896131166351794082151507555501395576*x^4 - 371916116695980755216640900185153166330681546329851680*x^3 - 57935826570177631099916455044945775522459483676836854543*x^2 + 201710684116538249174185560612387919784188057130327410730544*x + 93572448667401892834025834694441537328078001525771364657373312) # Defining polynomial: defining_polynomial(K) # Degree over Q: degree(K) # Signature: signature(K) # Discriminant: OK = ring_of_integers(K); discriminant(OK) # Ramified primes: prime_divisors(discriminant((OK))) # Autmorphisms: automorphisms(K) # Integral basis: basis(OK) # Class group: class_group(K) # Unit group: UK, fUK = unit_group(OK) # Unit rank: rank(UK) # Generator for roots of unity: torsion_units_generator(OK) # Fundamental units: [K(fUK(a)) for a in gens(UK)] # Regulator: regulator(K) # Analytic class number formula: # self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 146687112*x^16 - 37892719296*x^15 + 8408618911888512*x^14 + 4325813678364681744*x^13 - 243604861180754026285992*x^12 - 192688273988213296086844512*x^11 + 3797668582351192771935287035158*x^10 + 4155203541072329873982601967541328*x^9 - 30824703601196378502940767667441818360*x^8 - 44117476415146499319729949379490251620992*x^7 + 112503359565037178406650855732715578314837728*x^6 + 209476226244754241024858216530145737787244951984*x^5 - 121787795931109896131166351794082151507555501395576*x^4 - 371916116695980755216640900185153166330681546329851680*x^3 - 57935826570177631099916455044945775522459483676836854543*x^2 + 201710684116538249174185560612387919784188057130327410730544*x + 93572448667401892834025834694441537328078001525771364657373312); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK)))) # Intermediate fields: subfields(K)[2:end-1] # Galois group: G, Gtx = galois_group(K); G, transitive_group_identification(G) # Frobenius cycle types: # to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]