# SageMath code for working with number field 18.18.389573518709461277048874506777900581813141954677569649354154692963827395433931232826260909975966492327717495503836697626432438146795529306112.1. # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^18 - 146687112*x^16 - 37892719296*x^15 + 8408618911888512*x^14 + 4325813678364681744*x^13 - 243604861180754026285992*x^12 - 192688273988213296086844512*x^11 + 3797668582351192771935287035158*x^10 + 4155203541072329873982601967541328*x^9 - 30824703601196378502940767667441818360*x^8 - 44117476415146499319729949379490251620992*x^7 + 112503359565037178406650855732715578314837728*x^6 + 209476226244754241024858216530145737787244951984*x^5 - 121787795931109896131166351794082151507555501395576*x^4 - 371916116695980755216640900185153166330681546329851680*x^3 - 57935826570177631099916455044945775522459483676836854543*x^2 + 201710684116538249174185560612387919784188057130327410730544*x + 93572448667401892834025834694441537328078001525771364657373312) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^18 - 146687112*x^16 - 37892719296*x^15 + 8408618911888512*x^14 + 4325813678364681744*x^13 - 243604861180754026285992*x^12 - 192688273988213296086844512*x^11 + 3797668582351192771935287035158*x^10 + 4155203541072329873982601967541328*x^9 - 30824703601196378502940767667441818360*x^8 - 44117476415146499319729949379490251620992*x^7 + 112503359565037178406650855732715578314837728*x^6 + 209476226244754241024858216530145737787244951984*x^5 - 121787795931109896131166351794082151507555501395576*x^4 - 371916116695980755216640900185153166330681546329851680*x^3 - 57935826570177631099916455044945775522459483676836854543*x^2 + 201710684116538249174185560612387919784188057130327410730544*x + 93572448667401892834025834694441537328078001525771364657373312) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]