Properties

Label 18.18.160...625.1
Degree $18$
Signature $[18, 0]$
Discriminant $1.610\times 10^{31}$
Root discriminant \(54.16\)
Ramified primes $3,5,11$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $\He_3:C_4$ (as 18T49)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 - 18*x^16 + 141*x^15 + 108*x^14 - 1227*x^13 - 438*x^12 + 5220*x^11 + 1956*x^10 - 11198*x^9 - 5475*x^8 + 11283*x^7 + 6315*x^6 - 5184*x^5 - 3051*x^4 + 930*x^3 + 552*x^2 - 24*x - 16)
 
Copy content gp:K = bnfinit(y^18 - 6*y^17 - 18*y^16 + 141*y^15 + 108*y^14 - 1227*y^13 - 438*y^12 + 5220*y^11 + 1956*y^10 - 11198*y^9 - 5475*y^8 + 11283*y^7 + 6315*y^6 - 5184*y^5 - 3051*y^4 + 930*y^3 + 552*y^2 - 24*y - 16, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 6*x^17 - 18*x^16 + 141*x^15 + 108*x^14 - 1227*x^13 - 438*x^12 + 5220*x^11 + 1956*x^10 - 11198*x^9 - 5475*x^8 + 11283*x^7 + 6315*x^6 - 5184*x^5 - 3051*x^4 + 930*x^3 + 552*x^2 - 24*x - 16);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 6*x^17 - 18*x^16 + 141*x^15 + 108*x^14 - 1227*x^13 - 438*x^12 + 5220*x^11 + 1956*x^10 - 11198*x^9 - 5475*x^8 + 11283*x^7 + 6315*x^6 - 5184*x^5 - 3051*x^4 + 930*x^3 + 552*x^2 - 24*x - 16)
 

\( x^{18} - 6 x^{17} - 18 x^{16} + 141 x^{15} + 108 x^{14} - 1227 x^{13} - 438 x^{12} + 5220 x^{11} + \cdots - 16 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $18$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[18, 0]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(16096057926792443193781494140625\) \(\medspace = 3^{26}\cdot 5^{12}\cdot 11^{10}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(54.16\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{85/54}5^{3/4}11^{2/3}\approx 93.22094273535318$
Ramified primes:   \(3\), \(5\), \(11\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_3$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{16}-\frac{1}{4}a^{13}-\frac{1}{4}a^{11}+\frac{1}{4}a^{6}+\frac{1}{4}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{37\cdots 68}a^{17}+\frac{71\cdots 83}{94\cdots 92}a^{16}+\frac{10\cdots 91}{18\cdots 84}a^{15}+\frac{44\cdots 45}{37\cdots 68}a^{14}-\frac{16\cdots 61}{18\cdots 84}a^{13}-\frac{36\cdots 91}{37\cdots 68}a^{12}-\frac{23\cdots 25}{94\cdots 92}a^{11}-\frac{43\cdots 81}{94\cdots 92}a^{10}+\frac{31\cdots 15}{94\cdots 92}a^{9}+\frac{51\cdots 85}{18\cdots 84}a^{8}+\frac{40\cdots 49}{37\cdots 68}a^{7}+\frac{10\cdots 09}{37\cdots 68}a^{6}+\frac{16\cdots 53}{37\cdots 68}a^{5}-\frac{41\cdots 39}{18\cdots 84}a^{4}-\frac{39\cdots 67}{37\cdots 68}a^{3}+\frac{49\cdots 17}{94\cdots 92}a^{2}+\frac{96\cdots 27}{23\cdots 48}a-\frac{12\cdots 51}{47\cdots 96}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $17$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{210228674823}{4495183640512}a^{17}-\frac{333656980311}{1123795910128}a^{16}-\frac{1568915003739}{2247591820256}a^{15}+\frac{29630734176591}{4495183640512}a^{14}+\frac{4669835956473}{2247591820256}a^{13}-\frac{236079774883209}{4495183640512}a^{12}+\frac{1386225793605}{1123795910128}a^{11}+\frac{221926009061193}{1123795910128}a^{10}+\frac{12345341245681}{1123795910128}a^{9}-\frac{775022287054389}{2247591820256}a^{8}-\frac{349422813396393}{4495183640512}a^{7}+\frac{942031494560691}{4495183640512}a^{6}+\frac{261278007000147}{4495183640512}a^{5}-\frac{3750313132797}{2247591820256}a^{4}+\frac{22479559006527}{4495183640512}a^{3}-\frac{23630818341045}{1123795910128}a^{2}-\frac{1779153925239}{280948977532}a+\frac{126818574567}{561897955064}$, $\frac{17\cdots 53}{37\cdots 68}a^{17}-\frac{12\cdots 49}{94\cdots 92}a^{16}-\frac{32\cdots 13}{18\cdots 84}a^{15}+\frac{14\cdots 13}{37\cdots 68}a^{14}+\frac{47\cdots 63}{18\cdots 84}a^{13}-\frac{15\cdots 19}{37\cdots 68}a^{12}-\frac{17\cdots 77}{94\cdots 92}a^{11}+\frac{17\cdots 91}{94\cdots 92}a^{10}+\frac{70\cdots 31}{94\cdots 92}a^{9}-\frac{48\cdots 99}{18\cdots 84}a^{8}-\frac{56\cdots 71}{37\cdots 68}a^{7}-\frac{63\cdots 03}{37\cdots 68}a^{6}+\frac{44\cdots 77}{37\cdots 68}a^{5}+\frac{71\cdots 17}{18\cdots 84}a^{4}-\frac{12\cdots 63}{37\cdots 68}a^{3}-\frac{11\cdots 47}{94\cdots 92}a^{2}+\frac{34\cdots 49}{23\cdots 48}a+\frac{16\cdots 05}{47\cdots 96}$, $\frac{48\cdots 33}{37\cdots 68}a^{17}-\frac{91\cdots 93}{94\cdots 92}a^{16}-\frac{19\cdots 89}{18\cdots 84}a^{15}+\frac{77\cdots 37}{37\cdots 68}a^{14}-\frac{27\cdots 17}{18\cdots 84}a^{13}-\frac{58\cdots 59}{37\cdots 68}a^{12}+\frac{15\cdots 39}{94\cdots 92}a^{11}+\frac{53\cdots 47}{94\cdots 92}a^{10}-\frac{55\cdots 81}{94\cdots 92}a^{9}-\frac{20\cdots 43}{18\cdots 84}a^{8}+\frac{34\cdots 09}{37\cdots 68}a^{7}+\frac{40\cdots 61}{37\cdots 68}a^{6}-\frac{22\cdots 35}{37\cdots 68}a^{5}-\frac{92\cdots 59}{18\cdots 84}a^{4}+\frac{54\cdots 49}{37\cdots 68}a^{3}+\frac{84\cdots 09}{94\cdots 92}a^{2}-\frac{13\cdots 49}{23\cdots 48}a-\frac{11\cdots 91}{47\cdots 96}$, $\frac{22\cdots 39}{37\cdots 68}a^{17}-\frac{53\cdots 19}{94\cdots 92}a^{16}+\frac{51\cdots 33}{18\cdots 84}a^{15}+\frac{44\cdots 63}{37\cdots 68}a^{14}-\frac{44\cdots 03}{18\cdots 84}a^{13}-\frac{32\cdots 13}{37\cdots 68}a^{12}+\frac{20\cdots 21}{94\cdots 92}a^{11}+\frac{30\cdots 01}{94\cdots 92}a^{10}-\frac{80\cdots 43}{94\cdots 92}a^{9}-\frac{14\cdots 85}{18\cdots 84}a^{8}+\frac{58\cdots 51}{37\cdots 68}a^{7}+\frac{43\cdots 87}{37\cdots 68}a^{6}-\frac{43\cdots 93}{37\cdots 68}a^{5}-\frac{14\cdots 69}{18\cdots 84}a^{4}+\frac{10\cdots 79}{37\cdots 68}a^{3}+\frac{16\cdots 79}{94\cdots 92}a^{2}-\frac{19\cdots 43}{23\cdots 48}a-\frac{25\cdots 93}{47\cdots 96}$, $\frac{76\cdots 09}{18\cdots 84}a^{17}-\frac{12\cdots 97}{47\cdots 96}a^{16}-\frac{57\cdots 89}{94\cdots 92}a^{15}+\frac{10\cdots 85}{18\cdots 84}a^{14}+\frac{16\cdots 55}{94\cdots 92}a^{13}-\frac{83\cdots 75}{18\cdots 84}a^{12}+\frac{47\cdots 95}{47\cdots 96}a^{11}+\frac{73\cdots 99}{47\cdots 96}a^{10}+\frac{52\cdots 35}{47\cdots 96}a^{9}-\frac{21\cdots 15}{94\cdots 92}a^{8}-\frac{12\cdots 47}{18\cdots 84}a^{7}+\frac{80\cdots 33}{18\cdots 84}a^{6}+\frac{51\cdots 93}{18\cdots 84}a^{5}+\frac{11\cdots 69}{94\cdots 92}a^{4}+\frac{73\cdots 25}{18\cdots 84}a^{3}-\frac{26\cdots 95}{47\cdots 96}a^{2}-\frac{10\cdots 90}{58\cdots 87}a+\frac{46\cdots 49}{23\cdots 48}$, $\frac{64\cdots 87}{37\cdots 68}a^{17}-\frac{10\cdots 75}{94\cdots 92}a^{16}-\frac{47\cdots 79}{18\cdots 84}a^{15}+\frac{94\cdots 03}{37\cdots 68}a^{14}+\frac{11\cdots 37}{18\cdots 84}a^{13}-\frac{78\cdots 29}{37\cdots 68}a^{12}+\frac{22\cdots 73}{94\cdots 92}a^{11}+\frac{79\cdots 33}{94\cdots 92}a^{10}-\frac{49\cdots 55}{94\cdots 92}a^{9}-\frac{32\cdots 25}{18\cdots 84}a^{8}-\frac{54\cdots 09}{37\cdots 68}a^{7}+\frac{64\cdots 99}{37\cdots 68}a^{6}+\frac{10\cdots 59}{37\cdots 68}a^{5}-\frac{14\cdots 45}{18\cdots 84}a^{4}-\frac{51\cdots 37}{37\cdots 68}a^{3}+\frac{11\cdots 99}{94\cdots 92}a^{2}+\frac{50\cdots 19}{23\cdots 48}a-\frac{12\cdots 89}{47\cdots 96}$, $\frac{58\cdots 03}{37\cdots 68}a^{17}-\frac{15\cdots 83}{94\cdots 92}a^{16}+\frac{30\cdots 81}{18\cdots 84}a^{15}+\frac{13\cdots 67}{37\cdots 68}a^{14}-\frac{16\cdots 67}{18\cdots 84}a^{13}-\frac{11\cdots 85}{37\cdots 68}a^{12}+\frac{76\cdots 61}{94\cdots 92}a^{11}+\frac{12\cdots 01}{94\cdots 92}a^{10}-\frac{30\cdots 63}{94\cdots 92}a^{9}-\frac{74\cdots 29}{18\cdots 84}a^{8}+\frac{22\cdots 95}{37\cdots 68}a^{7}+\frac{26\cdots 31}{37\cdots 68}a^{6}-\frac{14\cdots 49}{37\cdots 68}a^{5}-\frac{10\cdots 37}{18\cdots 84}a^{4}+\frac{20\cdots 19}{37\cdots 68}a^{3}+\frac{13\cdots 39}{94\cdots 92}a^{2}+\frac{27\cdots 69}{23\cdots 48}a-\frac{32\cdots 97}{47\cdots 96}$, $\frac{23\cdots 01}{37\cdots 68}a^{17}-\frac{32\cdots 69}{94\cdots 92}a^{16}-\frac{26\cdots 33}{18\cdots 84}a^{15}+\frac{32\cdots 61}{37\cdots 68}a^{14}+\frac{23\cdots 39}{18\cdots 84}a^{13}-\frac{29\cdots 51}{37\cdots 68}a^{12}-\frac{65\cdots 05}{94\cdots 92}a^{11}+\frac{32\cdots 11}{94\cdots 92}a^{10}+\frac{26\cdots 59}{94\cdots 92}a^{9}-\frac{14\cdots 63}{18\cdots 84}a^{8}-\frac{23\cdots 35}{37\cdots 68}a^{7}+\frac{28\cdots 45}{37\cdots 68}a^{6}+\frac{23\cdots 21}{37\cdots 68}a^{5}-\frac{63\cdots 11}{18\cdots 84}a^{4}-\frac{94\cdots 75}{37\cdots 68}a^{3}+\frac{64\cdots 01}{94\cdots 92}a^{2}+\frac{76\cdots 41}{23\cdots 48}a-\frac{26\cdots 39}{47\cdots 96}$, $\frac{14\cdots 61}{18\cdots 84}a^{17}-\frac{24\cdots 25}{47\cdots 96}a^{16}-\frac{97\cdots 05}{94\cdots 92}a^{15}+\frac{21\cdots 57}{18\cdots 84}a^{14}+\frac{47\cdots 75}{94\cdots 92}a^{13}-\frac{17\cdots 87}{18\cdots 84}a^{12}+\frac{13\cdots 87}{47\cdots 96}a^{11}+\frac{17\cdots 31}{47\cdots 96}a^{10}-\frac{43\cdots 05}{47\cdots 96}a^{9}-\frac{71\cdots 55}{94\cdots 92}a^{8}+\frac{13\cdots 57}{18\cdots 84}a^{7}+\frac{14\cdots 69}{18\cdots 84}a^{6}-\frac{43\cdots 39}{18\cdots 84}a^{5}-\frac{33\cdots 55}{94\cdots 92}a^{4}-\frac{38\cdots 55}{18\cdots 84}a^{3}+\frac{33\cdots 77}{47\cdots 96}a^{2}+\frac{85\cdots 97}{11\cdots 74}a-\frac{67\cdots 11}{23\cdots 48}$, $\frac{40\cdots 27}{18\cdots 84}a^{17}-\frac{12\cdots 59}{47\cdots 96}a^{16}-\frac{97\cdots 51}{94\cdots 92}a^{15}+\frac{25\cdots 99}{18\cdots 84}a^{14}+\frac{15\cdots 61}{94\cdots 92}a^{13}-\frac{35\cdots 41}{18\cdots 84}a^{12}-\frac{60\cdots 87}{47\cdots 96}a^{11}+\frac{41\cdots 13}{47\cdots 96}a^{10}+\frac{23\cdots 57}{47\cdots 96}a^{9}-\frac{10\cdots 53}{94\cdots 92}a^{8}-\frac{18\cdots 61}{18\cdots 84}a^{7}-\frac{33\cdots 89}{18\cdots 84}a^{6}+\frac{13\cdots 99}{18\cdots 84}a^{5}+\frac{28\cdots 11}{94\cdots 92}a^{4}-\frac{32\cdots 73}{18\cdots 84}a^{3}-\frac{53\cdots 41}{47\cdots 96}a^{2}-\frac{29\cdots 65}{58\cdots 87}a+\frac{11\cdots 71}{23\cdots 48}$, $\frac{16\cdots 63}{37\cdots 68}a^{17}-\frac{25\cdots 07}{94\cdots 92}a^{16}-\frac{12\cdots 31}{18\cdots 84}a^{15}+\frac{22\cdots 91}{37\cdots 68}a^{14}+\frac{53\cdots 69}{18\cdots 84}a^{13}-\frac{16\cdots 13}{37\cdots 68}a^{12}-\frac{77\cdots 03}{94\cdots 92}a^{11}+\frac{13\cdots 21}{94\cdots 92}a^{10}+\frac{50\cdots 93}{94\cdots 92}a^{9}-\frac{30\cdots 57}{18\cdots 84}a^{8}-\frac{54\cdots 85}{37\cdots 68}a^{7}-\frac{46\cdots 41}{37\cdots 68}a^{6}+\frac{19\cdots 55}{37\cdots 68}a^{5}+\frac{48\cdots 39}{18\cdots 84}a^{4}+\frac{22\cdots 43}{37\cdots 68}a^{3}-\frac{86\cdots 53}{94\cdots 92}a^{2}-\frac{56\cdots 57}{23\cdots 48}a+\frac{20\cdots 63}{47\cdots 96}$, $\frac{12\cdots 07}{18\cdots 84}a^{17}-\frac{17\cdots 29}{47\cdots 96}a^{16}-\frac{12\cdots 87}{94\cdots 92}a^{15}+\frac{16\cdots 75}{18\cdots 84}a^{14}+\frac{94\cdots 57}{94\cdots 92}a^{13}-\frac{14\cdots 77}{18\cdots 84}a^{12}-\frac{25\cdots 57}{47\cdots 96}a^{11}+\frac{14\cdots 41}{47\cdots 96}a^{10}+\frac{10\cdots 01}{47\cdots 96}a^{9}-\frac{53\cdots 05}{94\cdots 92}a^{8}-\frac{99\cdots 85}{18\cdots 84}a^{7}+\frac{69\cdots 31}{18\cdots 84}a^{6}+\frac{84\cdots 91}{18\cdots 84}a^{5}-\frac{29\cdots 73}{94\cdots 92}a^{4}-\frac{23\cdots 09}{18\cdots 84}a^{3}-\frac{10\cdots 83}{47\cdots 96}a^{2}+\frac{55\cdots 83}{11\cdots 74}a+\frac{99\cdots 27}{23\cdots 48}$, $\frac{39\cdots 49}{18\cdots 84}a^{17}-\frac{73\cdots 23}{47\cdots 96}a^{16}-\frac{15\cdots 97}{94\cdots 92}a^{15}+\frac{63\cdots 37}{18\cdots 84}a^{14}-\frac{21\cdots 45}{94\cdots 92}a^{13}-\frac{47\cdots 71}{18\cdots 84}a^{12}+\frac{12\cdots 73}{47\cdots 96}a^{11}+\frac{44\cdots 39}{47\cdots 96}a^{10}-\frac{45\cdots 65}{47\cdots 96}a^{9}-\frac{18\cdots 87}{94\cdots 92}a^{8}+\frac{28\cdots 29}{18\cdots 84}a^{7}+\frac{38\cdots 65}{18\cdots 84}a^{6}-\frac{19\cdots 07}{18\cdots 84}a^{5}-\frac{10\cdots 03}{94\cdots 92}a^{4}+\frac{47\cdots 49}{18\cdots 84}a^{3}+\frac{10\cdots 23}{47\cdots 96}a^{2}-\frac{78\cdots 61}{11\cdots 74}a-\frac{22\cdots 59}{23\cdots 48}$, $\frac{125920666707489}{37\cdots 68}a^{17}+\frac{15\cdots 79}{94\cdots 92}a^{16}-\frac{21\cdots 77}{18\cdots 84}a^{15}-\frac{11\cdots 43}{37\cdots 68}a^{14}+\frac{49\cdots 39}{18\cdots 84}a^{13}+\frac{72\cdots 77}{37\cdots 68}a^{12}-\frac{22\cdots 09}{94\cdots 92}a^{11}-\frac{75\cdots 81}{94\cdots 92}a^{10}+\frac{10\cdots 59}{94\cdots 92}a^{9}+\frac{64\cdots 45}{18\cdots 84}a^{8}-\frac{91\cdots 51}{37\cdots 68}a^{7}-\frac{35\cdots 11}{37\cdots 68}a^{6}+\frac{97\cdots 97}{37\cdots 68}a^{5}+\frac{21\cdots 53}{18\cdots 84}a^{4}-\frac{42\cdots 07}{37\cdots 68}a^{3}-\frac{46\cdots 11}{94\cdots 92}a^{2}+\frac{38\cdots 81}{23\cdots 48}a+\frac{33\cdots 57}{47\cdots 96}$, $\frac{34\cdots 39}{37\cdots 68}a^{17}-\frac{40\cdots 55}{94\cdots 92}a^{16}-\frac{45\cdots 71}{18\cdots 84}a^{15}+\frac{40\cdots 63}{37\cdots 68}a^{14}+\frac{50\cdots 53}{18\cdots 84}a^{13}-\frac{36\cdots 53}{37\cdots 68}a^{12}-\frac{17\cdots 35}{94\cdots 92}a^{11}+\frac{37\cdots 65}{94\cdots 92}a^{10}+\frac{70\cdots 13}{94\cdots 92}a^{9}-\frac{12\cdots 61}{18\cdots 84}a^{8}-\frac{58\cdots 65}{37\cdots 68}a^{7}+\frac{84\cdots 27}{37\cdots 68}a^{6}+\frac{47\cdots 27}{37\cdots 68}a^{5}+\frac{40\cdots 47}{18\cdots 84}a^{4}-\frac{12\cdots 65}{37\cdots 68}a^{3}-\frac{92\cdots 29}{94\cdots 92}a^{2}+\frac{34\cdots 17}{23\cdots 48}a+\frac{21\cdots 79}{47\cdots 96}$, $\frac{31\cdots 95}{37\cdots 68}a^{17}-\frac{50\cdots 51}{94\cdots 92}a^{16}-\frac{22\cdots 51}{18\cdots 84}a^{15}+\frac{45\cdots 07}{37\cdots 68}a^{14}+\frac{57\cdots 73}{18\cdots 84}a^{13}-\frac{37\cdots 53}{37\cdots 68}a^{12}+\frac{85\cdots 17}{94\cdots 92}a^{11}+\frac{36\cdots 93}{94\cdots 92}a^{10}-\frac{51\cdots 43}{94\cdots 92}a^{9}-\frac{14\cdots 17}{18\cdots 84}a^{8}-\frac{52\cdots 25}{37\cdots 68}a^{7}+\frac{26\cdots 43}{37\cdots 68}a^{6}+\frac{91\cdots 83}{37\cdots 68}a^{5}-\frac{51\cdots 81}{18\cdots 84}a^{4}-\frac{55\cdots 25}{37\cdots 68}a^{3}+\frac{28\cdots 31}{94\cdots 92}a^{2}+\frac{74\cdots 07}{23\cdots 48}a+\frac{13\cdots 51}{47\cdots 96}$, $\frac{14\cdots 29}{94\cdots 92}a^{17}-\frac{27\cdots 67}{23\cdots 48}a^{16}-\frac{60\cdots 85}{47\cdots 96}a^{15}+\frac{23\cdots 17}{94\cdots 92}a^{14}-\frac{76\cdots 13}{47\cdots 96}a^{13}-\frac{17\cdots 35}{94\cdots 92}a^{12}+\frac{45\cdots 57}{23\cdots 48}a^{11}+\frac{16\cdots 27}{23\cdots 48}a^{10}-\frac{16\cdots 45}{23\cdots 48}a^{9}-\frac{67\cdots 99}{47\cdots 96}a^{8}+\frac{10\cdots 01}{94\cdots 92}a^{7}+\frac{14\cdots 85}{94\cdots 92}a^{6}-\frac{67\cdots 07}{94\cdots 92}a^{5}-\frac{37\cdots 83}{47\cdots 96}a^{4}+\frac{15\cdots 65}{94\cdots 92}a^{3}+\frac{40\cdots 93}{23\cdots 48}a^{2}-\frac{502934546769420}{58\cdots 87}a-\frac{74\cdots 37}{11\cdots 74}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 14711932756.8 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{18}\cdot(2\pi)^{0}\cdot 14711932756.8 \cdot 1}{2\cdot\sqrt{16096057926792443193781494140625}}\cr\approx \mathstrut & 0.480639981584 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 - 18*x^16 + 141*x^15 + 108*x^14 - 1227*x^13 - 438*x^12 + 5220*x^11 + 1956*x^10 - 11198*x^9 - 5475*x^8 + 11283*x^7 + 6315*x^6 - 5184*x^5 - 3051*x^4 + 930*x^3 + 552*x^2 - 24*x - 16) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 6*x^17 - 18*x^16 + 141*x^15 + 108*x^14 - 1227*x^13 - 438*x^12 + 5220*x^11 + 1956*x^10 - 11198*x^9 - 5475*x^8 + 11283*x^7 + 6315*x^6 - 5184*x^5 - 3051*x^4 + 930*x^3 + 552*x^2 - 24*x - 16, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 6*x^17 - 18*x^16 + 141*x^15 + 108*x^14 - 1227*x^13 - 438*x^12 + 5220*x^11 + 1956*x^10 - 11198*x^9 - 5475*x^8 + 11283*x^7 + 6315*x^6 - 5184*x^5 - 3051*x^4 + 930*x^3 + 552*x^2 - 24*x - 16); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 6*x^17 - 18*x^16 + 141*x^15 + 108*x^14 - 1227*x^13 - 438*x^12 + 5220*x^11 + 1956*x^10 - 11198*x^9 - 5475*x^8 + 11283*x^7 + 6315*x^6 - 5184*x^5 - 3051*x^4 + 930*x^3 + 552*x^2 - 24*x - 16); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\He_3:C_4$ (as 18T49):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 108
The 14 conjugacy class representatives for $\He_3:C_4$
Character table for $\He_3:C_4$

Intermediate fields

\(\Q(\sqrt{5}) \), 6.6.55130625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 18 sibling: data not computed
Degree 27 sibling: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{3}{,}\,{\href{/padicField/2.2.0.1}{2} }^{3}$ R R ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.6.0.1}{6} }$ R ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.6.0.1}{6} }$ ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.6.0.1}{6} }$ ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{3}{,}\,{\href{/padicField/23.2.0.1}{2} }^{3}$ ${\href{/padicField/29.3.0.1}{3} }^{6}$ ${\href{/padicField/31.3.0.1}{3} }^{6}$ ${\href{/padicField/37.4.0.1}{4} }^{3}{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}$ ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }^{6}$ ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }^{3}$ ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.6.0.1}{6} }$ ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.6.0.1}{6} }$ ${\href{/padicField/59.3.0.1}{3} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.2.9.26b15.1$x^{18} + 18 x^{17} + 162 x^{16} + 960 x^{15} + 4176 x^{14} + 14112 x^{13} + 38304 x^{12} + 85251 x^{11} + 157572 x^{10} + 243605 x^{9} + 315879 x^{8} + 343158 x^{7} + 310740 x^{6} + 232260 x^{5} + 140952 x^{4} + 67560 x^{3} + 24336 x^{2} + 5952 x + 755$$9$$2$$26$not computednot computed
\(5\) Copy content Toggle raw display 5.3.2.3a1.2$x^{6} + 6 x^{4} + 6 x^{3} + 9 x^{2} + 18 x + 14$$2$$3$$3$$C_6$$$[\ ]_{2}^{3}$$
5.3.4.9a1.1$x^{12} + 12 x^{10} + 12 x^{9} + 54 x^{8} + 108 x^{7} + 162 x^{6} + 324 x^{5} + 405 x^{4} + 432 x^{3} + 491 x^{2} + 324 x + 81$$4$$3$$9$$C_{12}$$$[\ ]_{4}^{3}$$
\(11\) Copy content Toggle raw display 11.3.1.0a1.1$x^{3} + 2 x + 9$$1$$3$$0$$C_3$$$[\ ]^{3}$$
11.2.3.4a1.1$x^{6} + 21 x^{5} + 153 x^{4} + 427 x^{3} + 306 x^{2} + 95 x + 8$$3$$2$$4$$S_3\times C_3$$$[\ ]_{3}^{6}$$
11.3.3.6a1.1$x^{9} + 6 x^{7} + 27 x^{6} + 12 x^{5} + 108 x^{4} + 251 x^{3} + 108 x^{2} + 486 x + 740$$3$$3$$6$$S_3\times C_3$$$[\ ]_{3}^{6}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)