Show commands: Magma
Group invariants
| Abstract group: | $\He_3:C_4$ |
| |
| Order: | $108=2^{2} \cdot 3^{3}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $18$ |
| |
| Transitive number $t$: | $49$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $3$ |
| |
| Generators: | $(1,8,14)(2,9,15)(3,7,13)(4,10,18)(5,11,16)(6,12,17)$, $(1,6,15,10,3,5,14,12,2,4,13,11)(7,17,8,18,9,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $36$: $C_3^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 6: $C_3^2:C_4$
Degree 9: None
Low degree siblings
18T49, 27T32, 36T85 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{18}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{6},1^{6}$ | $9$ | $2$ | $6$ | $( 1, 8)( 2, 9)( 3, 7)(10,18)(11,16)(12,17)$ |
| 3A1 | $3^{6}$ | $1$ | $3$ | $12$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)$ |
| 3A-1 | $3^{6}$ | $1$ | $3$ | $12$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)$ |
| 3B | $3^{5},1^{3}$ | $12$ | $3$ | $10$ | $( 1, 9,14)( 2, 7,15)( 3, 8,13)( 4, 5, 6)(10,12,11)$ |
| 3C | $3^{6}$ | $12$ | $3$ | $12$ | $( 1, 7,14)( 2, 8,15)( 3, 9,13)( 4,16,10)( 5,17,11)( 6,18,12)$ |
| 4A1 | $4^{3},2^{3}$ | $9$ | $4$ | $12$ | $( 1,10, 8,18)( 2,11, 9,16)( 3,12, 7,17)( 4,13)( 5,14)( 6,15)$ |
| 4A-1 | $4^{3},2^{3}$ | $9$ | $4$ | $12$ | $( 1,18, 8,10)( 2,16, 9,11)( 3,17, 7,12)( 4,13)( 5,14)( 6,15)$ |
| 6A1 | $6^{2},3^{2}$ | $9$ | $6$ | $14$ | $( 1, 9, 3, 8, 2, 7)( 4, 5, 6)(10,16,12,18,11,17)(13,14,15)$ |
| 6A-1 | $6^{2},3^{2}$ | $9$ | $6$ | $14$ | $( 1, 7, 2, 8, 3, 9)( 4, 6, 5)(10,17,11,18,12,16)(13,15,14)$ |
| 12A1 | $12,6$ | $9$ | $12$ | $16$ | $( 1,17, 9,10, 3,16, 8,12, 2,18, 7,11)( 4,15, 5,13, 6,14)$ |
| 12A-1 | $12,6$ | $9$ | $12$ | $16$ | $( 1, 6,15,18, 2, 4,13,16, 3, 5,14,17)( 7,12, 9,11, 8,10)$ |
| 12A5 | $12,6$ | $9$ | $12$ | $16$ | $( 1,16, 7,10, 2,17, 8,11, 3,18, 9,12)( 4,14, 6,13, 5,15)$ |
| 12A-5 | $12,6$ | $9$ | $12$ | $16$ | $( 1, 4,14,18, 3, 6,13,17, 2, 5,15,16)( 7,10, 8,11, 9,12)$ |
Malle's constant $a(G)$: $1/6$
Character table
| 1A | 2A | 3A1 | 3A-1 | 3B | 3C | 4A1 | 4A-1 | 6A1 | 6A-1 | 12A1 | 12A-1 | 12A5 | 12A-5 | ||
| Size | 1 | 9 | 1 | 1 | 12 | 12 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | |
| 2 P | 1A | 1A | 3A-1 | 3A1 | 3B | 3C | 2A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 6A-1 | 6A1 | |
| 3 P | 1A | 2A | 1A | 1A | 1A | 1A | 4A-1 | 4A1 | 2A | 2A | 4A1 | 4A-1 | 4A1 | 4A-1 | |
| Type | |||||||||||||||
| 108.15.1a | R | ||||||||||||||
| 108.15.1b | R | ||||||||||||||
| 108.15.1c1 | C | ||||||||||||||
| 108.15.1c2 | C | ||||||||||||||
| 108.15.3a1 | C | ||||||||||||||
| 108.15.3a2 | C | ||||||||||||||
| 108.15.3b1 | C | ||||||||||||||
| 108.15.3b2 | C | ||||||||||||||
| 108.15.3c1 | C | ||||||||||||||
| 108.15.3c2 | C | ||||||||||||||
| 108.15.3c3 | C | ||||||||||||||
| 108.15.3c4 | C | ||||||||||||||
| 108.15.4a | R | ||||||||||||||
| 108.15.4b | R |
Regular extensions
Data not computed