Normalized defining polynomial
\( x^{18} - 3 x^{17} - 63 x^{16} + 147 x^{15} + 1245 x^{14} - 1968 x^{13} - 9306 x^{12} + 9264 x^{11} + 28194 x^{10} - 15305 x^{9} - 31773 x^{8} + 6729 x^{7} + 13914 x^{6} - 786 x^{5} - 2355 x^{4} + 57 x^{3} + 144 x^{2} - 6 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1303780692070187898696301025390625=3^{30}\cdot 5^{12}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{15} a^{12} - \frac{2}{15} a^{11} + \frac{2}{15} a^{10} - \frac{2}{15} a^{9} - \frac{1}{15} a^{8} - \frac{2}{5} a^{7} - \frac{2}{15} a^{6} + \frac{1}{5} a^{5} + \frac{1}{3} a^{4} - \frac{7}{15} a^{3} + \frac{1}{3} a^{2} - \frac{1}{15} a + \frac{1}{15}$, $\frac{1}{15} a^{13} - \frac{2}{15} a^{11} + \frac{2}{15} a^{10} - \frac{1}{3} a^{9} + \frac{7}{15} a^{8} + \frac{1}{15} a^{7} - \frac{1}{15} a^{6} - \frac{4}{15} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{15} a + \frac{2}{15}$, $\frac{1}{30} a^{14} - \frac{1}{30} a^{13} + \frac{1}{15} a^{10} + \frac{1}{10} a^{9} + \frac{1}{15} a^{8} + \frac{11}{30} a^{7} + \frac{4}{15} a^{6} - \frac{7}{30} a^{5} + \frac{13}{30} a^{4} - \frac{1}{30} a^{3} + \frac{1}{6} a^{2} - \frac{2}{15} a - \frac{1}{6}$, $\frac{1}{30} a^{15} - \frac{1}{30} a^{13} + \frac{1}{15} a^{11} - \frac{1}{6} a^{10} - \frac{1}{2} a^{9} - \frac{7}{30} a^{8} - \frac{1}{30} a^{7} + \frac{1}{30} a^{6} - \frac{7}{15} a^{5} + \frac{2}{5} a^{4} + \frac{7}{15} a^{3} - \frac{3}{10} a^{2} + \frac{1}{30} a + \frac{1}{6}$, $\frac{1}{60} a^{16} - \frac{1}{60} a^{13} - \frac{1}{30} a^{12} + \frac{1}{20} a^{11} + \frac{3}{20} a^{10} + \frac{1}{15} a^{9} + \frac{1}{12} a^{8} + \frac{1}{10} a^{7} - \frac{7}{15} a^{6} + \frac{23}{60} a^{5} + \frac{7}{60} a^{4} - \frac{1}{5} a^{3} - \frac{7}{30} a^{2} - \frac{5}{12} a - \frac{3}{20}$, $\frac{1}{3128510590723505270220} a^{17} - \frac{149124626755521321}{148976694796357393820} a^{16} - \frac{1086440315856168989}{74488347398178696910} a^{15} - \frac{176148569544369983}{446930084389072181460} a^{14} - \frac{29309133087563912441}{1042836863574501756740} a^{13} + \frac{12237128454140380297}{3128510590723505270220} a^{12} - \frac{260599333872013245337}{1564255295361752635110} a^{11} - \frac{70102934378161838093}{446930084389072181460} a^{10} + \frac{721719304775710286687}{3128510590723505270220} a^{9} + \frac{288222447089404827007}{625702118144701054044} a^{8} + \frac{197490859271754113683}{782127647680876317555} a^{7} - \frac{685138884102944083451}{3128510590723505270220} a^{6} + \frac{384367656598138457053}{782127647680876317555} a^{5} - \frac{196076964259729169051}{625702118144701054044} a^{4} - \frac{81720838399340175983}{521418431787250878370} a^{3} + \frac{5517262803393795917}{1042836863574501756740} a^{2} + \frac{238256398873319359821}{521418431787250878370} a + \frac{198456299804807353391}{3128510590723505270220}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39669265431.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3.C_2$ (as 18T49):
| A solvable group of order 108 |
| The 14 conjugacy class representatives for $C_3^2:S_3.C_2$ |
| Character table for $C_3^2:S_3.C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 6.6.55130625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| $11$ | 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 11.9.6.1 | $x^{9} - 121 x^{3} + 3993$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |