Properties

Label 18.18.130...625.1
Degree $18$
Signature $[18, 0]$
Discriminant $1.304\times 10^{33}$
Root discriminant \(69.14\)
Ramified primes $3,5,11$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $\He_3:C_4$ (as 18T49)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^17 - 63*x^16 + 147*x^15 + 1245*x^14 - 1968*x^13 - 9306*x^12 + 9264*x^11 + 28194*x^10 - 15305*x^9 - 31773*x^8 + 6729*x^7 + 13914*x^6 - 786*x^5 - 2355*x^4 + 57*x^3 + 144*x^2 - 6*x - 1)
 
Copy content gp:K = bnfinit(y^18 - 3*y^17 - 63*y^16 + 147*y^15 + 1245*y^14 - 1968*y^13 - 9306*y^12 + 9264*y^11 + 28194*y^10 - 15305*y^9 - 31773*y^8 + 6729*y^7 + 13914*y^6 - 786*y^5 - 2355*y^4 + 57*y^3 + 144*y^2 - 6*y - 1, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 3*x^17 - 63*x^16 + 147*x^15 + 1245*x^14 - 1968*x^13 - 9306*x^12 + 9264*x^11 + 28194*x^10 - 15305*x^9 - 31773*x^8 + 6729*x^7 + 13914*x^6 - 786*x^5 - 2355*x^4 + 57*x^3 + 144*x^2 - 6*x - 1);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 3*x^17 - 63*x^16 + 147*x^15 + 1245*x^14 - 1968*x^13 - 9306*x^12 + 9264*x^11 + 28194*x^10 - 15305*x^9 - 31773*x^8 + 6729*x^7 + 13914*x^6 - 786*x^5 - 2355*x^4 + 57*x^3 + 144*x^2 - 6*x - 1)
 

\( x^{18} - 3 x^{17} - 63 x^{16} + 147 x^{15} + 1245 x^{14} - 1968 x^{13} - 9306 x^{12} + 9264 x^{11} + \cdots - 1 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $18$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[18, 0]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(1303780692070187898696301025390625\) \(\medspace = 3^{30}\cdot 5^{12}\cdot 11^{10}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(69.14\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{97/54}5^{3/4}11^{2/3}\approx 118.99821203205568$
Ramified primes:   \(3\), \(5\), \(11\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_3$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{9}-\frac{1}{3}a^{8}-\frac{1}{3}a^{7}-\frac{1}{3}a^{5}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{11}+\frac{1}{3}a^{9}+\frac{1}{3}a^{8}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{15}a^{12}-\frac{2}{15}a^{11}+\frac{2}{15}a^{10}-\frac{2}{15}a^{9}-\frac{1}{15}a^{8}-\frac{2}{5}a^{7}-\frac{2}{15}a^{6}+\frac{1}{5}a^{5}+\frac{1}{3}a^{4}-\frac{7}{15}a^{3}+\frac{1}{3}a^{2}-\frac{1}{15}a+\frac{1}{15}$, $\frac{1}{15}a^{13}-\frac{2}{15}a^{11}+\frac{2}{15}a^{10}-\frac{1}{3}a^{9}+\frac{7}{15}a^{8}+\frac{1}{15}a^{7}-\frac{1}{15}a^{6}-\frac{4}{15}a^{5}+\frac{1}{5}a^{4}+\frac{2}{5}a^{3}-\frac{2}{5}a^{2}-\frac{1}{15}a+\frac{2}{15}$, $\frac{1}{30}a^{14}-\frac{1}{30}a^{13}+\frac{1}{15}a^{10}+\frac{1}{10}a^{9}+\frac{1}{15}a^{8}+\frac{11}{30}a^{7}+\frac{4}{15}a^{6}-\frac{7}{30}a^{5}+\frac{13}{30}a^{4}-\frac{1}{30}a^{3}+\frac{1}{6}a^{2}-\frac{2}{15}a-\frac{1}{6}$, $\frac{1}{30}a^{15}-\frac{1}{30}a^{13}+\frac{1}{15}a^{11}-\frac{1}{6}a^{10}-\frac{1}{2}a^{9}-\frac{7}{30}a^{8}-\frac{1}{30}a^{7}+\frac{1}{30}a^{6}-\frac{7}{15}a^{5}+\frac{2}{5}a^{4}+\frac{7}{15}a^{3}-\frac{3}{10}a^{2}+\frac{1}{30}a+\frac{1}{6}$, $\frac{1}{60}a^{16}-\frac{1}{60}a^{13}-\frac{1}{30}a^{12}+\frac{1}{20}a^{11}+\frac{3}{20}a^{10}+\frac{1}{15}a^{9}+\frac{1}{12}a^{8}+\frac{1}{10}a^{7}-\frac{7}{15}a^{6}+\frac{23}{60}a^{5}+\frac{7}{60}a^{4}-\frac{1}{5}a^{3}-\frac{7}{30}a^{2}-\frac{5}{12}a-\frac{3}{20}$, $\frac{1}{31\cdots 20}a^{17}-\frac{14\cdots 21}{14\cdots 20}a^{16}-\frac{10\cdots 89}{74\cdots 10}a^{15}-\frac{17\cdots 83}{44\cdots 60}a^{14}-\frac{29\cdots 41}{10\cdots 40}a^{13}+\frac{12\cdots 97}{31\cdots 20}a^{12}-\frac{26\cdots 37}{15\cdots 10}a^{11}-\frac{70\cdots 93}{44\cdots 60}a^{10}+\frac{72\cdots 87}{31\cdots 20}a^{9}+\frac{28\cdots 07}{62\cdots 44}a^{8}+\frac{19\cdots 83}{78\cdots 55}a^{7}-\frac{68\cdots 51}{31\cdots 20}a^{6}+\frac{38\cdots 53}{78\cdots 55}a^{5}-\frac{19\cdots 51}{62\cdots 44}a^{4}-\frac{81\cdots 83}{52\cdots 70}a^{3}+\frac{55\cdots 17}{10\cdots 40}a^{2}+\frac{23\cdots 21}{52\cdots 70}a+\frac{19\cdots 91}{31\cdots 20}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $17$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{13\cdots 14}{26\cdots 85}a^{17}-\frac{61\cdots 78}{37\cdots 55}a^{16}-\frac{11\cdots 47}{37\cdots 55}a^{15}+\frac{61\cdots 00}{74\cdots 91}a^{14}+\frac{31\cdots 81}{52\cdots 37}a^{13}-\frac{29\cdots 72}{26\cdots 85}a^{12}-\frac{11\cdots 42}{26\cdots 85}a^{11}+\frac{21\cdots 71}{37\cdots 55}a^{10}+\frac{61\cdots 44}{52\cdots 37}a^{9}-\frac{52\cdots 79}{52\cdots 37}a^{8}-\frac{28\cdots 87}{26\cdots 85}a^{7}+\frac{12\cdots 68}{26\cdots 85}a^{6}+\frac{93\cdots 72}{26\cdots 85}a^{5}-\frac{35\cdots 43}{52\cdots 37}a^{4}-\frac{15\cdots 67}{52\cdots 37}a^{3}+\frac{11\cdots 38}{26\cdots 85}a^{2}+\frac{30\cdots 38}{26\cdots 85}a-\frac{21\cdots 18}{26\cdots 85}$, $\frac{37\cdots 04}{26\cdots 85}a^{17}-\frac{20\cdots 79}{37\cdots 55}a^{16}-\frac{31\cdots 06}{37\cdots 55}a^{15}+\frac{21\cdots 15}{74\cdots 91}a^{14}+\frac{80\cdots 84}{52\cdots 37}a^{13}-\frac{11\cdots 42}{26\cdots 85}a^{12}-\frac{26\cdots 01}{26\cdots 85}a^{11}+\frac{88\cdots 28}{37\cdots 55}a^{10}+\frac{12\cdots 25}{52\cdots 37}a^{9}-\frac{26\cdots 27}{52\cdots 37}a^{8}-\frac{37\cdots 62}{26\cdots 85}a^{7}+\frac{89\cdots 24}{26\cdots 85}a^{6}+\frac{75\cdots 11}{26\cdots 85}a^{5}-\frac{46\cdots 27}{52\cdots 37}a^{4}-\frac{73\cdots 68}{52\cdots 37}a^{3}+\frac{18\cdots 78}{26\cdots 85}a^{2}-\frac{31\cdots 81}{26\cdots 85}a-\frac{13\cdots 14}{26\cdots 85}$, $\frac{22\cdots 07}{26\cdots 85}a^{17}-\frac{23\cdots 50}{74\cdots 91}a^{16}-\frac{39\cdots 28}{74\cdots 91}a^{15}+\frac{11\cdots 52}{74\cdots 91}a^{14}+\frac{51\cdots 41}{52\cdots 37}a^{13}-\frac{59\cdots 96}{26\cdots 85}a^{12}-\frac{35\cdots 01}{52\cdots 37}a^{11}+\frac{89\cdots 43}{74\cdots 91}a^{10}+\frac{94\cdots 51}{52\cdots 37}a^{9}-\frac{12\cdots 71}{52\cdots 37}a^{8}-\frac{39\cdots 56}{26\cdots 85}a^{7}+\frac{78\cdots 31}{52\cdots 37}a^{6}+\frac{23\cdots 23}{52\cdots 37}a^{5}-\frac{18\cdots 92}{52\cdots 37}a^{4}-\frac{17\cdots 49}{52\cdots 37}a^{3}+\frac{71\cdots 09}{26\cdots 85}a^{2}-\frac{34\cdots 48}{52\cdots 37}a-\frac{97\cdots 10}{52\cdots 37}$, $\frac{17\cdots 87}{44\cdots 46}a^{17}-\frac{51\cdots 93}{44\cdots 46}a^{16}-\frac{55\cdots 79}{22\cdots 30}a^{15}+\frac{41\cdots 97}{74\cdots 10}a^{14}+\frac{10\cdots 13}{22\cdots 73}a^{13}-\frac{16\cdots 47}{22\cdots 30}a^{12}-\frac{40\cdots 54}{11\cdots 65}a^{11}+\frac{35\cdots 11}{11\cdots 65}a^{10}+\frac{39\cdots 07}{37\cdots 55}a^{9}-\frac{15\cdots 99}{37\cdots 55}a^{8}-\frac{24\cdots 31}{22\cdots 30}a^{7}-\frac{68\cdots 62}{11\cdots 65}a^{6}+\frac{83\cdots 88}{22\cdots 73}a^{5}+\frac{19\cdots 01}{22\cdots 30}a^{4}-\frac{11\cdots 86}{37\cdots 55}a^{3}-\frac{13\cdots 08}{11\cdots 65}a^{2}+\frac{66\cdots 29}{74\cdots 10}a+\frac{42\cdots 31}{11\cdots 65}$, $\frac{99\cdots 71}{74\cdots 10}a^{17}-\frac{29\cdots 31}{22\cdots 30}a^{16}-\frac{10\cdots 53}{11\cdots 65}a^{15}+\frac{30\cdots 49}{11\cdots 65}a^{14}+\frac{46\cdots 62}{22\cdots 73}a^{13}+\frac{10\cdots 77}{14\cdots 82}a^{12}-\frac{19\cdots 23}{11\cdots 65}a^{11}-\frac{91\cdots 19}{74\cdots 10}a^{10}+\frac{69\cdots 53}{11\cdots 65}a^{9}+\frac{11\cdots 83}{22\cdots 30}a^{8}-\frac{17\cdots 87}{22\cdots 30}a^{7}-\frac{50\cdots 73}{74\cdots 10}a^{6}+\frac{67\cdots 37}{22\cdots 30}a^{5}+\frac{10\cdots 93}{37\cdots 55}a^{4}-\frac{56\cdots 03}{22\cdots 30}a^{3}-\frac{32\cdots 31}{11\cdots 65}a^{2}+\frac{52\cdots 17}{11\cdots 65}a+\frac{42\cdots 29}{11\cdots 65}$, $\frac{14\cdots 13}{62\cdots 44}a^{17}-\frac{20\cdots 83}{22\cdots 30}a^{16}-\frac{20\cdots 57}{14\cdots 82}a^{15}+\frac{20\cdots 97}{44\cdots 60}a^{14}+\frac{38\cdots 03}{15\cdots 10}a^{13}-\frac{42\cdots 57}{62\cdots 44}a^{12}-\frac{16\cdots 03}{10\cdots 40}a^{11}+\frac{13\cdots 92}{37\cdots 55}a^{10}+\frac{10\cdots 27}{31\cdots 20}a^{9}-\frac{11\cdots 11}{15\cdots 10}a^{8}-\frac{22\cdots 33}{15\cdots 10}a^{7}+\frac{13\cdots 93}{31\cdots 20}a^{6}-\frac{20\cdots 81}{10\cdots 40}a^{5}-\frac{42\cdots 83}{52\cdots 70}a^{4}+\frac{24\cdots 73}{15\cdots 10}a^{3}+\frac{23\cdots 49}{62\cdots 44}a^{2}-\frac{72\cdots 41}{62\cdots 44}a+\frac{92\cdots 17}{15\cdots 11}$, $\frac{75\cdots 39}{10\cdots 40}a^{17}-\frac{16\cdots 97}{44\cdots 60}a^{16}-\frac{45\cdots 16}{11\cdots 65}a^{15}+\frac{89\cdots 61}{44\cdots 60}a^{14}+\frac{67\cdots 03}{10\cdots 40}a^{13}-\frac{10\cdots 03}{31\cdots 20}a^{12}-\frac{25\cdots 24}{78\cdots 55}a^{11}+\frac{87\cdots 83}{44\cdots 60}a^{10}+\frac{21\cdots 93}{62\cdots 44}a^{9}-\frac{14\cdots 37}{31\cdots 20}a^{8}+\frac{33\cdots 09}{52\cdots 70}a^{7}+\frac{12\cdots 71}{31\cdots 20}a^{6}-\frac{86\cdots 99}{31\cdots 22}a^{5}-\frac{38\cdots 01}{31\cdots 20}a^{4}-\frac{53\cdots 21}{15\cdots 10}a^{3}+\frac{37\cdots 73}{31\cdots 20}a^{2}+\frac{21\cdots 39}{31\cdots 22}a-\frac{18\cdots 47}{10\cdots 40}$, $\frac{70\cdots 23}{78\cdots 55}a^{17}-\frac{79\cdots 46}{37\cdots 55}a^{16}-\frac{22\cdots 18}{37\cdots 55}a^{15}+\frac{11\cdots 89}{11\cdots 65}a^{14}+\frac{97\cdots 74}{78\cdots 55}a^{13}-\frac{31\cdots 22}{26\cdots 85}a^{12}-\frac{81\cdots 77}{78\cdots 55}a^{11}+\frac{11\cdots 51}{22\cdots 73}a^{10}+\frac{97\cdots 31}{26\cdots 85}a^{9}-\frac{60\cdots 88}{78\cdots 55}a^{8}-\frac{43\cdots 52}{78\cdots 55}a^{7}+\frac{17\cdots 43}{26\cdots 85}a^{6}+\frac{26\cdots 79}{78\cdots 55}a^{5}-\frac{53\cdots 98}{15\cdots 11}a^{4}-\frac{20\cdots 94}{26\cdots 85}a^{3}+\frac{20\cdots 43}{26\cdots 85}a^{2}+\frac{45\cdots 71}{78\cdots 55}a-\frac{18\cdots 98}{26\cdots 85}$, $\frac{49\cdots 93}{44\cdots 60}a^{17}-\frac{17\cdots 97}{44\cdots 60}a^{16}-\frac{76\cdots 74}{11\cdots 65}a^{15}+\frac{85\cdots 53}{44\cdots 60}a^{14}+\frac{57\cdots 81}{44\cdots 60}a^{13}-\frac{12\cdots 03}{44\cdots 60}a^{12}-\frac{20\cdots 67}{22\cdots 30}a^{11}+\frac{61\cdots 39}{44\cdots 60}a^{10}+\frac{10\cdots 87}{44\cdots 60}a^{9}-\frac{38\cdots 49}{14\cdots 20}a^{8}-\frac{22\cdots 97}{11\cdots 65}a^{7}+\frac{60\cdots 79}{44\cdots 60}a^{6}+\frac{14\cdots 47}{22\cdots 30}a^{5}-\frac{10\cdots 09}{44\cdots 60}a^{4}-\frac{21\cdots 53}{37\cdots 55}a^{3}+\frac{20\cdots 09}{14\cdots 20}a^{2}+\frac{44\cdots 46}{11\cdots 65}a-\frac{56\cdots 73}{44\cdots 60}$, $\frac{28\cdots 38}{15\cdots 11}a^{17}-\frac{76\cdots 67}{14\cdots 20}a^{16}-\frac{12\cdots 37}{11\cdots 65}a^{15}+\frac{55\cdots 91}{22\cdots 73}a^{14}+\frac{72\cdots 31}{31\cdots 20}a^{13}-\frac{49\cdots 11}{15\cdots 10}a^{12}-\frac{54\cdots 77}{31\cdots 20}a^{11}+\frac{62\cdots 83}{44\cdots 60}a^{10}+\frac{42\cdots 46}{78\cdots 55}a^{9}-\frac{58\cdots 91}{31\cdots 20}a^{8}-\frac{96\cdots 51}{15\cdots 10}a^{7}+\frac{14\cdots 51}{78\cdots 55}a^{6}+\frac{81\cdots 23}{31\cdots 20}a^{5}+\frac{30\cdots 81}{10\cdots 40}a^{4}-\frac{20\cdots 52}{52\cdots 37}a^{3}-\frac{85\cdots 93}{15\cdots 10}a^{2}+\frac{61\cdots 27}{31\cdots 20}a+\frac{66\cdots 83}{31\cdots 20}$, $\frac{76\cdots 07}{52\cdots 70}a^{17}-\frac{11\cdots 59}{22\cdots 73}a^{16}-\frac{99\cdots 08}{11\cdots 65}a^{15}+\frac{20\cdots 37}{74\cdots 10}a^{14}+\frac{13\cdots 71}{78\cdots 55}a^{13}-\frac{61\cdots 17}{15\cdots 10}a^{12}-\frac{11\cdots 91}{10\cdots 74}a^{11}+\frac{46\cdots 06}{22\cdots 73}a^{10}+\frac{44\cdots 79}{15\cdots 10}a^{9}-\frac{10\cdots 64}{26\cdots 85}a^{8}-\frac{16\cdots 24}{78\cdots 55}a^{7}+\frac{74\cdots 61}{31\cdots 22}a^{6}+\frac{26\cdots 13}{52\cdots 70}a^{5}-\frac{38\cdots 61}{78\cdots 55}a^{4}-\frac{14\cdots 98}{15\cdots 11}a^{3}+\frac{16\cdots 01}{52\cdots 70}a^{2}-\frac{18\cdots 31}{52\cdots 70}a+\frac{13\cdots 76}{52\cdots 37}$, $\frac{79\cdots 33}{31\cdots 20}a^{17}-\frac{33\cdots 93}{44\cdots 60}a^{16}-\frac{59\cdots 89}{37\cdots 55}a^{15}+\frac{32\cdots 39}{89\cdots 92}a^{14}+\frac{98\cdots 11}{31\cdots 20}a^{13}-\frac{14\cdots 47}{31\cdots 20}a^{12}-\frac{18\cdots 62}{78\cdots 55}a^{11}+\frac{95\cdots 67}{44\cdots 60}a^{10}+\frac{72\cdots 57}{10\cdots 40}a^{9}-\frac{66\cdots 75}{20\cdots 48}a^{8}-\frac{11\cdots 00}{15\cdots 11}a^{7}+\frac{25\cdots 43}{31\cdots 20}a^{6}+\frac{40\cdots 23}{15\cdots 11}a^{5}+\frac{35\cdots 13}{31\cdots 20}a^{4}-\frac{18\cdots 67}{78\cdots 55}a^{3}-\frac{57\cdots 25}{62\cdots 44}a^{2}+\frac{56\cdots 03}{31\cdots 22}a-\frac{31\cdots 01}{10\cdots 40}$, $\frac{71\cdots 19}{31\cdots 20}a^{17}-\frac{10\cdots 99}{14\cdots 20}a^{16}-\frac{15\cdots 19}{11\cdots 65}a^{15}+\frac{54\cdots 89}{14\cdots 20}a^{14}+\frac{17\cdots 13}{62\cdots 44}a^{13}-\frac{15\cdots 13}{31\cdots 20}a^{12}-\frac{30\cdots 67}{15\cdots 10}a^{11}+\frac{22\cdots 23}{89\cdots 92}a^{10}+\frac{17\cdots 59}{31\cdots 20}a^{9}-\frac{13\cdots 13}{31\cdots 20}a^{8}-\frac{28\cdots 53}{52\cdots 70}a^{7}+\frac{72\cdots 37}{31\cdots 20}a^{6}+\frac{15\cdots 46}{78\cdots 55}a^{5}-\frac{12\cdots 21}{31\cdots 20}a^{4}-\frac{11\cdots 13}{52\cdots 70}a^{3}+\frac{90\cdots 59}{31\cdots 20}a^{2}+\frac{24\cdots 27}{78\cdots 55}a+\frac{85\cdots 83}{31\cdots 20}$, $\frac{22\cdots 67}{74\cdots 10}a^{17}+\frac{22\cdots 87}{74\cdots 10}a^{16}-\frac{16\cdots 09}{74\cdots 10}a^{15}-\frac{21\cdots 51}{74\cdots 10}a^{14}+\frac{64\cdots 18}{11\cdots 65}a^{13}+\frac{17\cdots 51}{22\cdots 30}a^{12}-\frac{21\cdots 37}{37\cdots 55}a^{11}-\frac{77\cdots 38}{11\cdots 65}a^{10}+\frac{26\cdots 64}{11\cdots 65}a^{9}+\frac{24\cdots 38}{11\cdots 65}a^{8}-\frac{28\cdots 09}{74\cdots 10}a^{7}-\frac{24\cdots 89}{11\cdots 65}a^{6}+\frac{22\cdots 26}{11\cdots 65}a^{5}+\frac{34\cdots 47}{44\cdots 46}a^{4}-\frac{14\cdots 22}{37\cdots 55}a^{3}-\frac{96\cdots 53}{11\cdots 65}a^{2}+\frac{56\cdots 27}{22\cdots 30}a+\frac{69\cdots 76}{37\cdots 55}$, $\frac{77\cdots 01}{26\cdots 85}a^{17}-\frac{39\cdots 67}{44\cdots 60}a^{16}-\frac{20\cdots 62}{11\cdots 65}a^{15}+\frac{32\cdots 97}{74\cdots 10}a^{14}+\frac{11\cdots 63}{31\cdots 20}a^{13}-\frac{89\cdots 81}{15\cdots 10}a^{12}-\frac{17\cdots 51}{62\cdots 44}a^{11}+\frac{38\cdots 63}{14\cdots 20}a^{10}+\frac{12\cdots 57}{15\cdots 10}a^{9}-\frac{11\cdots 77}{31\cdots 20}a^{8}-\frac{21\cdots 12}{26\cdots 85}a^{7}+\frac{60\cdots 01}{78\cdots 55}a^{6}+\frac{92\cdots 79}{31\cdots 20}a^{5}+\frac{97\cdots 83}{31\cdots 20}a^{4}-\frac{30\cdots 29}{10\cdots 74}a^{3}-\frac{12\cdots 69}{26\cdots 85}a^{2}+\frac{23\cdots 17}{62\cdots 44}a+\frac{16\cdots 91}{31\cdots 20}$, $\frac{87\cdots 61}{31\cdots 20}a^{17}-\frac{47\cdots 79}{44\cdots 60}a^{16}-\frac{75\cdots 39}{44\cdots 46}a^{15}+\frac{81\cdots 53}{14\cdots 20}a^{14}+\frac{19\cdots 63}{62\cdots 44}a^{13}-\frac{25\cdots 07}{31\cdots 20}a^{12}-\frac{10\cdots 79}{52\cdots 70}a^{11}+\frac{19\cdots 27}{44\cdots 60}a^{10}+\frac{16\cdots 37}{31\cdots 20}a^{9}-\frac{28\cdots 49}{31\cdots 20}a^{8}-\frac{60\cdots 09}{15\cdots 10}a^{7}+\frac{62\cdots 51}{10\cdots 40}a^{6}+\frac{37\cdots 73}{31\cdots 22}a^{5}-\frac{47\cdots 17}{31\cdots 20}a^{4}-\frac{12\cdots 58}{78\cdots 55}a^{3}+\frac{34\cdots 69}{31\cdots 20}a^{2}+\frac{11\cdots 29}{15\cdots 10}a+\frac{57\cdots 97}{31\cdots 20}$, $\frac{48\cdots 01}{31\cdots 20}a^{17}-\frac{68\cdots 31}{11\cdots 65}a^{16}-\frac{33\cdots 09}{37\cdots 55}a^{15}+\frac{95\cdots 09}{29\cdots 64}a^{14}+\frac{12\cdots 77}{78\cdots 55}a^{13}-\frac{50\cdots 31}{10\cdots 40}a^{12}-\frac{10\cdots 29}{10\cdots 40}a^{11}+\frac{29\cdots 43}{11\cdots 65}a^{10}+\frac{13\cdots 59}{62\cdots 44}a^{9}-\frac{89\cdots 97}{15\cdots 10}a^{8}-\frac{18\cdots 61}{31\cdots 22}a^{7}+\frac{12\cdots 71}{31\cdots 20}a^{6}-\frac{21\cdots 59}{31\cdots 20}a^{5}-\frac{15\cdots 03}{15\cdots 10}a^{4}+\frac{27\cdots 22}{78\cdots 55}a^{3}+\frac{13\cdots 09}{31\cdots 20}a^{2}-\frac{12\cdots 49}{31\cdots 20}a+\frac{27\cdots 59}{52\cdots 70}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 39669265431.8 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{18}\cdot(2\pi)^{0}\cdot 39669265431.8 \cdot 1}{2\cdot\sqrt{1303780692070187898696301025390625}}\cr\approx \mathstrut & 0.143999774588 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^17 - 63*x^16 + 147*x^15 + 1245*x^14 - 1968*x^13 - 9306*x^12 + 9264*x^11 + 28194*x^10 - 15305*x^9 - 31773*x^8 + 6729*x^7 + 13914*x^6 - 786*x^5 - 2355*x^4 + 57*x^3 + 144*x^2 - 6*x - 1) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 3*x^17 - 63*x^16 + 147*x^15 + 1245*x^14 - 1968*x^13 - 9306*x^12 + 9264*x^11 + 28194*x^10 - 15305*x^9 - 31773*x^8 + 6729*x^7 + 13914*x^6 - 786*x^5 - 2355*x^4 + 57*x^3 + 144*x^2 - 6*x - 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 3*x^17 - 63*x^16 + 147*x^15 + 1245*x^14 - 1968*x^13 - 9306*x^12 + 9264*x^11 + 28194*x^10 - 15305*x^9 - 31773*x^8 + 6729*x^7 + 13914*x^6 - 786*x^5 - 2355*x^4 + 57*x^3 + 144*x^2 - 6*x - 1); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 3*x^17 - 63*x^16 + 147*x^15 + 1245*x^14 - 1968*x^13 - 9306*x^12 + 9264*x^11 + 28194*x^10 - 15305*x^9 - 31773*x^8 + 6729*x^7 + 13914*x^6 - 786*x^5 - 2355*x^4 + 57*x^3 + 144*x^2 - 6*x - 1); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\He_3:C_4$ (as 18T49):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 108
The 14 conjugacy class representatives for $\He_3:C_4$
Character table for $\He_3:C_4$

Intermediate fields

\(\Q(\sqrt{5}) \), 6.6.55130625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 18 sibling: data not computed
Degree 27 sibling: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.12.0.1}{12} }{,}\,{\href{/padicField/2.6.0.1}{6} }$ R R ${\href{/padicField/7.4.0.1}{4} }^{3}{,}\,{\href{/padicField/7.2.0.1}{2} }^{3}$ R ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.6.0.1}{6} }$ ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.6.0.1}{6} }$ ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.6.0.1}{6} }$ ${\href{/padicField/29.3.0.1}{3} }^{6}$ ${\href{/padicField/31.3.0.1}{3} }^{6}$ ${\href{/padicField/37.4.0.1}{4} }^{3}{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}$ ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}$ ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.6.0.1}{6} }$ ${\href{/padicField/47.4.0.1}{4} }^{3}{,}\,{\href{/padicField/47.2.0.1}{2} }^{3}$ ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.6.0.1}{6} }$ ${\href{/padicField/59.3.0.1}{3} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.2.9.30b15.7$x^{18} + 24 x^{17} + 258 x^{16} + 1734 x^{15} + 8295 x^{14} + 30198 x^{13} + 86982 x^{12} + 203016 x^{11} + 389556 x^{10} + 619403 x^{9} + 818211 x^{8} + 895902 x^{7} + 807108 x^{6} + 590100 x^{5} + 342360 x^{4} + 151992 x^{3} + 48528 x^{2} + 9888 x + 947$$9$$2$$30$18T49not computed
\(5\) Copy content Toggle raw display 5.3.2.3a1.2$x^{6} + 6 x^{4} + 6 x^{3} + 9 x^{2} + 18 x + 14$$2$$3$$3$$C_6$$$[\ ]_{2}^{3}$$
5.3.4.9a1.1$x^{12} + 12 x^{10} + 12 x^{9} + 54 x^{8} + 108 x^{7} + 162 x^{6} + 324 x^{5} + 405 x^{4} + 432 x^{3} + 491 x^{2} + 324 x + 81$$4$$3$$9$$C_{12}$$$[\ ]_{4}^{3}$$
\(11\) Copy content Toggle raw display 11.3.1.0a1.1$x^{3} + 2 x + 9$$1$$3$$0$$C_3$$$[\ ]^{3}$$
11.2.3.4a1.1$x^{6} + 21 x^{5} + 153 x^{4} + 427 x^{3} + 306 x^{2} + 95 x + 8$$3$$2$$4$$S_3\times C_3$$$[\ ]_{3}^{6}$$
11.3.3.6a1.1$x^{9} + 6 x^{7} + 27 x^{6} + 12 x^{5} + 108 x^{4} + 251 x^{3} + 108 x^{2} + 486 x + 740$$3$$3$$6$$S_3\times C_3$$$[\ ]_{3}^{6}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)