Normalized defining polynomial
\( x^{18} - 9 x^{17} + 45 x^{16} - 156 x^{15} + 384 x^{14} - 672 x^{13} + 749 x^{12} - 204 x^{11} + \cdots + 16 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[10, 4]$ |
| |
| Discriminant: |
\(36163754150128780430177325000000000000\)
\(\medspace = 2^{12}\cdot 3^{24}\cdot 5^{14}\cdot 13^{6}\cdot 1061117\)
|
| |
| Root discriminant: | \(122.06\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(13\), \(1061117\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{1061117}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5}a^{12}-\frac{1}{5}a^{11}+\frac{1}{5}a^{10}-\frac{1}{5}a^{7}+\frac{1}{5}a^{6}-\frac{1}{5}a^{5}+\frac{1}{5}a^{2}-\frac{1}{5}a+\frac{1}{5}$, $\frac{1}{5}a^{13}+\frac{1}{5}a^{10}-\frac{1}{5}a^{8}-\frac{1}{5}a^{5}+\frac{1}{5}a^{3}+\frac{1}{5}$, $\frac{1}{10}a^{14}-\frac{1}{10}a^{13}+\frac{1}{10}a^{11}+\frac{2}{5}a^{10}-\frac{1}{10}a^{9}+\frac{1}{10}a^{8}-\frac{1}{2}a^{7}-\frac{1}{10}a^{6}-\frac{2}{5}a^{5}-\frac{2}{5}a^{4}+\frac{2}{5}a^{3}+\frac{1}{10}a+\frac{2}{5}$, $\frac{1}{10}a^{15}-\frac{1}{10}a^{13}-\frac{1}{10}a^{12}-\frac{3}{10}a^{11}+\frac{1}{10}a^{10}-\frac{2}{5}a^{8}-\frac{2}{5}a^{7}+\frac{3}{10}a^{6}+\frac{2}{5}a^{5}+\frac{2}{5}a^{3}-\frac{1}{10}a^{2}-\frac{3}{10}a+\frac{1}{5}$, $\frac{1}{100}a^{16}+\frac{1}{50}a^{15}+\frac{1}{100}a^{14}+\frac{3}{100}a^{13}-\frac{9}{100}a^{12}-\frac{29}{100}a^{11}-\frac{9}{25}a^{10}-\frac{3}{50}a^{9}+\frac{11}{50}a^{8}-\frac{11}{100}a^{7}+\frac{17}{50}a^{6}+\frac{9}{25}a^{5}-\frac{11}{25}a^{4}+\frac{13}{100}a^{3}+\frac{1}{100}a^{2}-\frac{19}{50}a-\frac{6}{25}$, $\frac{1}{100}a^{17}-\frac{3}{100}a^{15}+\frac{1}{100}a^{14}+\frac{1}{20}a^{13}+\frac{9}{100}a^{12}+\frac{1}{50}a^{11}+\frac{3}{50}a^{10}+\frac{17}{50}a^{9}+\frac{1}{4}a^{8}+\frac{9}{25}a^{7}-\frac{3}{25}a^{6}+\frac{11}{25}a^{5}+\frac{1}{100}a^{4}-\frac{1}{20}a^{3}-\frac{1}{5}a^{2}+\frac{8}{25}a-\frac{3}{25}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $13$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{243}{100}a^{16}-\frac{486}{25}a^{15}+\frac{9153}{100}a^{14}-\frac{30051}{100}a^{13}+\frac{69363}{100}a^{12}-\frac{113967}{100}a^{11}+\frac{57141}{50}a^{10}-\frac{2817}{25}a^{9}-\frac{45006}{25}a^{8}+\frac{344877}{100}a^{7}-\frac{161309}{50}a^{6}+\frac{30042}{25}a^{5}+\frac{17817}{25}a^{4}-\frac{117521}{100}a^{3}+\frac{30393}{100}a^{2}+\frac{8823}{50}a-\frac{1483}{25}$, $\frac{333}{50}a^{16}-\frac{1332}{25}a^{15}+\frac{6289}{25}a^{14}-\frac{20713}{25}a^{13}+\frac{96153}{50}a^{12}-\frac{79796}{25}a^{11}+\frac{82011}{25}a^{10}-\frac{27043}{50}a^{9}-\frac{236199}{50}a^{8}+\frac{236331}{25}a^{7}-\frac{459993}{50}a^{6}+\frac{98239}{25}a^{5}+\frac{34759}{25}a^{4}-\frac{147971}{50}a^{3}+\frac{43933}{50}a^{2}+\frac{19211}{50}a-\frac{3481}{25}$, $\frac{2}{5}a^{16}-\frac{16}{5}a^{15}+\frac{149}{10}a^{14}-\frac{483}{10}a^{13}+109a^{12}-\frac{1717}{10}a^{11}+\frac{771}{5}a^{10}+\frac{331}{10}a^{9}-\frac{3407}{10}a^{8}+\frac{1125}{2}a^{7}-\frac{4483}{10}a^{6}+\frac{299}{5}a^{5}+\frac{1182}{5}a^{4}-\frac{1244}{5}a^{3}+46a^{2}+\frac{447}{10}a-19$, $\frac{3}{10}a^{16}-\frac{12}{5}a^{15}+\frac{57}{5}a^{14}-\frac{189}{5}a^{13}+\frac{177}{2}a^{12}-\frac{744}{5}a^{11}+\frac{781}{5}a^{10}-\frac{319}{10}a^{9}-\frac{2147}{10}a^{8}+443a^{7}-\frac{4387}{10}a^{6}+\frac{964}{5}a^{5}+\frac{312}{5}a^{4}-\frac{1413}{10}a^{3}+\frac{85}{2}a^{2}+\frac{37}{2}a-\frac{31}{5}$, $\frac{11}{50}a^{16}-\frac{44}{25}a^{15}+\frac{213}{25}a^{14}-\frac{721}{25}a^{13}+\frac{3491}{50}a^{12}-\frac{3102}{25}a^{11}+\frac{3632}{25}a^{10}-\frac{3331}{50}a^{9}-\frac{6533}{50}a^{8}+\frac{8957}{25}a^{7}-\frac{21241}{50}a^{6}+\frac{6718}{25}a^{5}-\frac{322}{25}a^{4}-\frac{6557}{50}a^{3}+\frac{3851}{50}a^{2}-\frac{353}{50}a-\frac{507}{25}$, $\frac{253}{50}a^{17}-\frac{2017}{50}a^{16}+\frac{4686}{25}a^{15}-\frac{30269}{50}a^{14}+\frac{33977}{25}a^{13}-\frac{21203}{10}a^{12}+\frac{92679}{50}a^{11}+\frac{5289}{10}a^{10}-\frac{216641}{50}a^{9}+\frac{172018}{25}a^{8}-\frac{25886}{5}a^{7}+\frac{5678}{25}a^{6}+\frac{15458}{5}a^{5}-\frac{132179}{50}a^{4}-\frac{573}{25}a^{3}+\frac{23564}{25}a^{2}-\frac{664}{25}a-\frac{1749}{25}$, $\frac{17}{20}a^{16}-\frac{34}{5}a^{15}+\frac{643}{20}a^{14}-\frac{2121}{20}a^{13}+\frac{4933}{20}a^{12}-\frac{8213}{20}a^{11}+\frac{4241}{10}a^{10}-\frac{367}{5}a^{9}-\frac{3031}{5}a^{8}+\frac{24447}{20}a^{7}-\frac{11931}{10}a^{6}+\frac{2537}{5}a^{5}+\frac{942}{5}a^{4}-\frac{7871}{20}a^{3}+\frac{2343}{20}a^{2}+\frac{507}{10}a-\frac{91}{5}$, $\frac{1}{100}a^{16}-\frac{2}{25}a^{15}-\frac{39}{100}a^{14}+\frac{413}{100}a^{13}-\frac{1899}{100}a^{12}+\frac{5661}{100}a^{11}-\frac{5273}{50}a^{10}+\frac{5817}{50}a^{9}-\frac{719}{50}a^{8}-\frac{20371}{100}a^{7}+\frac{8461}{25}a^{6}-\frac{6026}{25}a^{5}+\frac{104}{25}a^{4}+\frac{13573}{100}a^{3}-\frac{4889}{100}a^{2}-\frac{562}{25}a+\frac{89}{25}$, $\frac{347}{100}a^{17}-\frac{2583}{100}a^{16}+\frac{11563}{100}a^{15}-\frac{8974}{25}a^{14}+\frac{19074}{25}a^{13}-\frac{5552}{5}a^{12}+\frac{79771}{100}a^{11}+\frac{3209}{5}a^{10}-\frac{64461}{25}a^{9}+\frac{352689}{100}a^{8}-\frac{41227}{20}a^{7}-\frac{13964}{25}a^{6}+\frac{8881}{5}a^{5}-\frac{109161}{100}a^{4}-\frac{20077}{50}a^{3}+\frac{42067}{100}a^{2}+\frac{1232}{25}a-\frac{823}{25}$, $\frac{1}{100}a^{16}-\frac{2}{25}a^{15}-\frac{49}{100}a^{14}+\frac{483}{100}a^{13}-\frac{2199}{100}a^{12}+\frac{6551}{100}a^{11}-\frac{6163}{50}a^{10}+\frac{3511}{25}a^{9}-\frac{727}{25}a^{8}-\frac{22021}{100}a^{7}+\frac{19527}{50}a^{6}-\frac{7656}{25}a^{5}+\frac{1064}{25}a^{4}+\frac{13393}{100}a^{3}-\frac{6289}{100}a^{2}-\frac{679}{50}a+\frac{169}{25}$, $\frac{9039}{100}a^{17}-\frac{3066}{5}a^{16}+\frac{258223}{100}a^{15}-\frac{746451}{100}a^{14}+\frac{282929}{20}a^{13}-\frac{1713929}{100}a^{12}+\frac{109357}{25}a^{11}+\frac{1342397}{50}a^{10}-\frac{1358446}{25}a^{9}+\frac{205565}{4}a^{8}-\frac{159233}{50}a^{7}-\frac{1920109}{50}a^{6}+\frac{812114}{25}a^{5}-\frac{279001}{100}a^{4}-\frac{448939}{20}a^{3}+\frac{7877}{5}a^{2}+\frac{284939}{50}a+\frac{27183}{25}$, $\frac{90239}{20}a^{17}-\frac{4289259}{100}a^{16}+\frac{22477347}{100}a^{15}-\frac{40890237}{50}a^{14}+\frac{107363019}{50}a^{13}-\frac{103028701}{25}a^{12}+\frac{547042581}{100}a^{11}-\frac{92432539}{25}a^{10}-\frac{133447653}{50}a^{9}+\frac{1123621187}{100}a^{8}-\frac{1586535641}{100}a^{7}+\frac{600317437}{50}a^{6}-\frac{75322511}{25}a^{5}-\frac{346096169}{100}a^{4}+\frac{181176449}{50}a^{3}-\frac{62741949}{100}a^{2}-\frac{24631219}{50}a+\frac{3549769}{25}$, $\frac{46479037}{50}a^{17}-\frac{702600803}{100}a^{16}+\frac{1585143291}{50}a^{15}-\frac{9931709249}{100}a^{14}+\frac{21381165071}{100}a^{13}-\frac{31654204097}{100}a^{12}+\frac{4802612413}{20}a^{11}+\frac{7812385501}{50}a^{10}-\frac{35579710073}{50}a^{9}+\frac{25278023781}{25}a^{8}-\frac{63743885163}{100}a^{7}-\frac{518643216}{5}a^{6}+\frac{12148904487}{25}a^{5}-\frac{16440158857}{50}a^{4}-\frac{8870686149}{100}a^{3}+\frac{12198934827}{100}a^{2}+\frac{207410403}{25}a-\frac{258315739}{25}$
|
| |
| Regulator: | \( 5673649067000 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{10}\cdot(2\pi)^{4}\cdot 5673649067000 \cdot 1}{2\cdot\sqrt{36163754150128780430177325000000000000}}\cr\approx \mathstrut & 0.752861606595519 \end{aligned}\] (assuming GRH)
Galois group
$C_2^5.S_4^2$ (as 18T623):
| A solvable group of order 18432 |
| The 120 conjugacy class representatives for $C_2^5.S_4^2$ |
| Character table for $C_2^5.S_4^2$ |
Intermediate fields
| 3.3.1620.1, 3.3.1300.1, 9.9.5837879385000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }^{3}{,}\,{\href{/padicField/7.2.0.1}{2} }^{3}$ | ${\href{/padicField/11.6.0.1}{6} }^{3}$ | R | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{3}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.6.0.1}{6} }$ | ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.6.0.1}{6} }$ | ${\href{/padicField/29.3.0.1}{3} }^{6}$ | ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.6.0.1}{6} }$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{5}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.6.0.1}{6} }$ | ${\href{/padicField/47.4.0.1}{4} }^{4}{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 2.4.3.8a1.2 | $x^{12} + 3 x^{9} + 3 x^{8} + 3 x^{6} + 6 x^{5} + 3 x^{4} + x^{3} + 3 x^{2} + 3 x + 3$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $$[\ ]_{3}^{4}$$ | |
|
\(3\)
| 3.6.3.24a1.1 | $x^{18} + 6 x^{16} + 15 x^{14} + 6 x^{13} + 29 x^{12} + 24 x^{11} + 51 x^{10} + 36 x^{9} + 72 x^{8} + 60 x^{7} + 85 x^{6} + 78 x^{5} + 69 x^{4} + 44 x^{3} + 60 x^{2} + 48 x + 23$ | $3$ | $6$ | $24$ | $S_3 \times C_3$ | not computed |
|
\(5\)
| 5.2.3.4a1.2 | $x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 48 x + 13$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 5.2.6.10a1.2 | $x^{12} + 24 x^{11} + 252 x^{10} + 1520 x^{9} + 5820 x^{8} + 14784 x^{7} + 25376 x^{6} + 29568 x^{5} + 23280 x^{4} + 12160 x^{3} + 4032 x^{2} + 768 x + 69$ | $6$ | $2$ | $10$ | $D_6$ | $$[\ ]_{6}^{2}$$ | |
|
\(13\)
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 13.2.2.2a1.2 | $x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 13.4.2.4a1.2 | $x^{8} + 6 x^{6} + 24 x^{5} + 13 x^{4} + 72 x^{3} + 156 x^{2} + 48 x + 17$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
|
\(1061117\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |