Properties

Label 18.10.361...000.1
Degree $18$
Signature $[10, 4]$
Discriminant $3.616\times 10^{37}$
Root discriminant \(122.06\)
Ramified primes $2,3,5,13,1061117$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^5.S_4^2$ (as 18T623)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 45*x^16 - 156*x^15 + 384*x^14 - 672*x^13 + 749*x^12 - 204*x^11 - 1008*x^10 + 2191*x^9 - 2253*x^8 + 876*x^7 + 684*x^6 - 1107*x^5 + 414*x^4 + 269*x^3 - 180*x^2 - 24*x + 16)
 
Copy content gp:K = bnfinit(y^18 - 9*y^17 + 45*y^16 - 156*y^15 + 384*y^14 - 672*y^13 + 749*y^12 - 204*y^11 - 1008*y^10 + 2191*y^9 - 2253*y^8 + 876*y^7 + 684*y^6 - 1107*y^5 + 414*y^4 + 269*y^3 - 180*y^2 - 24*y + 16, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 9*x^17 + 45*x^16 - 156*x^15 + 384*x^14 - 672*x^13 + 749*x^12 - 204*x^11 - 1008*x^10 + 2191*x^9 - 2253*x^8 + 876*x^7 + 684*x^6 - 1107*x^5 + 414*x^4 + 269*x^3 - 180*x^2 - 24*x + 16);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 9*x^17 + 45*x^16 - 156*x^15 + 384*x^14 - 672*x^13 + 749*x^12 - 204*x^11 - 1008*x^10 + 2191*x^9 - 2253*x^8 + 876*x^7 + 684*x^6 - 1107*x^5 + 414*x^4 + 269*x^3 - 180*x^2 - 24*x + 16)
 

\( x^{18} - 9 x^{17} + 45 x^{16} - 156 x^{15} + 384 x^{14} - 672 x^{13} + 749 x^{12} - 204 x^{11} + \cdots + 16 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $18$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[10, 4]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(36163754150128780430177325000000000000\) \(\medspace = 2^{12}\cdot 3^{24}\cdot 5^{14}\cdot 13^{6}\cdot 1061117\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(122.06\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\), \(5\), \(13\), \(1061117\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{1061117}) \)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5}a^{12}-\frac{1}{5}a^{11}+\frac{1}{5}a^{10}-\frac{1}{5}a^{7}+\frac{1}{5}a^{6}-\frac{1}{5}a^{5}+\frac{1}{5}a^{2}-\frac{1}{5}a+\frac{1}{5}$, $\frac{1}{5}a^{13}+\frac{1}{5}a^{10}-\frac{1}{5}a^{8}-\frac{1}{5}a^{5}+\frac{1}{5}a^{3}+\frac{1}{5}$, $\frac{1}{10}a^{14}-\frac{1}{10}a^{13}+\frac{1}{10}a^{11}+\frac{2}{5}a^{10}-\frac{1}{10}a^{9}+\frac{1}{10}a^{8}-\frac{1}{2}a^{7}-\frac{1}{10}a^{6}-\frac{2}{5}a^{5}-\frac{2}{5}a^{4}+\frac{2}{5}a^{3}+\frac{1}{10}a+\frac{2}{5}$, $\frac{1}{10}a^{15}-\frac{1}{10}a^{13}-\frac{1}{10}a^{12}-\frac{3}{10}a^{11}+\frac{1}{10}a^{10}-\frac{2}{5}a^{8}-\frac{2}{5}a^{7}+\frac{3}{10}a^{6}+\frac{2}{5}a^{5}+\frac{2}{5}a^{3}-\frac{1}{10}a^{2}-\frac{3}{10}a+\frac{1}{5}$, $\frac{1}{100}a^{16}+\frac{1}{50}a^{15}+\frac{1}{100}a^{14}+\frac{3}{100}a^{13}-\frac{9}{100}a^{12}-\frac{29}{100}a^{11}-\frac{9}{25}a^{10}-\frac{3}{50}a^{9}+\frac{11}{50}a^{8}-\frac{11}{100}a^{7}+\frac{17}{50}a^{6}+\frac{9}{25}a^{5}-\frac{11}{25}a^{4}+\frac{13}{100}a^{3}+\frac{1}{100}a^{2}-\frac{19}{50}a-\frac{6}{25}$, $\frac{1}{100}a^{17}-\frac{3}{100}a^{15}+\frac{1}{100}a^{14}+\frac{1}{20}a^{13}+\frac{9}{100}a^{12}+\frac{1}{50}a^{11}+\frac{3}{50}a^{10}+\frac{17}{50}a^{9}+\frac{1}{4}a^{8}+\frac{9}{25}a^{7}-\frac{3}{25}a^{6}+\frac{11}{25}a^{5}+\frac{1}{100}a^{4}-\frac{1}{20}a^{3}-\frac{1}{5}a^{2}+\frac{8}{25}a-\frac{3}{25}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $13$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{243}{100}a^{16}-\frac{486}{25}a^{15}+\frac{9153}{100}a^{14}-\frac{30051}{100}a^{13}+\frac{69363}{100}a^{12}-\frac{113967}{100}a^{11}+\frac{57141}{50}a^{10}-\frac{2817}{25}a^{9}-\frac{45006}{25}a^{8}+\frac{344877}{100}a^{7}-\frac{161309}{50}a^{6}+\frac{30042}{25}a^{5}+\frac{17817}{25}a^{4}-\frac{117521}{100}a^{3}+\frac{30393}{100}a^{2}+\frac{8823}{50}a-\frac{1483}{25}$, $\frac{333}{50}a^{16}-\frac{1332}{25}a^{15}+\frac{6289}{25}a^{14}-\frac{20713}{25}a^{13}+\frac{96153}{50}a^{12}-\frac{79796}{25}a^{11}+\frac{82011}{25}a^{10}-\frac{27043}{50}a^{9}-\frac{236199}{50}a^{8}+\frac{236331}{25}a^{7}-\frac{459993}{50}a^{6}+\frac{98239}{25}a^{5}+\frac{34759}{25}a^{4}-\frac{147971}{50}a^{3}+\frac{43933}{50}a^{2}+\frac{19211}{50}a-\frac{3481}{25}$, $\frac{2}{5}a^{16}-\frac{16}{5}a^{15}+\frac{149}{10}a^{14}-\frac{483}{10}a^{13}+109a^{12}-\frac{1717}{10}a^{11}+\frac{771}{5}a^{10}+\frac{331}{10}a^{9}-\frac{3407}{10}a^{8}+\frac{1125}{2}a^{7}-\frac{4483}{10}a^{6}+\frac{299}{5}a^{5}+\frac{1182}{5}a^{4}-\frac{1244}{5}a^{3}+46a^{2}+\frac{447}{10}a-19$, $\frac{3}{10}a^{16}-\frac{12}{5}a^{15}+\frac{57}{5}a^{14}-\frac{189}{5}a^{13}+\frac{177}{2}a^{12}-\frac{744}{5}a^{11}+\frac{781}{5}a^{10}-\frac{319}{10}a^{9}-\frac{2147}{10}a^{8}+443a^{7}-\frac{4387}{10}a^{6}+\frac{964}{5}a^{5}+\frac{312}{5}a^{4}-\frac{1413}{10}a^{3}+\frac{85}{2}a^{2}+\frac{37}{2}a-\frac{31}{5}$, $\frac{11}{50}a^{16}-\frac{44}{25}a^{15}+\frac{213}{25}a^{14}-\frac{721}{25}a^{13}+\frac{3491}{50}a^{12}-\frac{3102}{25}a^{11}+\frac{3632}{25}a^{10}-\frac{3331}{50}a^{9}-\frac{6533}{50}a^{8}+\frac{8957}{25}a^{7}-\frac{21241}{50}a^{6}+\frac{6718}{25}a^{5}-\frac{322}{25}a^{4}-\frac{6557}{50}a^{3}+\frac{3851}{50}a^{2}-\frac{353}{50}a-\frac{507}{25}$, $\frac{253}{50}a^{17}-\frac{2017}{50}a^{16}+\frac{4686}{25}a^{15}-\frac{30269}{50}a^{14}+\frac{33977}{25}a^{13}-\frac{21203}{10}a^{12}+\frac{92679}{50}a^{11}+\frac{5289}{10}a^{10}-\frac{216641}{50}a^{9}+\frac{172018}{25}a^{8}-\frac{25886}{5}a^{7}+\frac{5678}{25}a^{6}+\frac{15458}{5}a^{5}-\frac{132179}{50}a^{4}-\frac{573}{25}a^{3}+\frac{23564}{25}a^{2}-\frac{664}{25}a-\frac{1749}{25}$, $\frac{17}{20}a^{16}-\frac{34}{5}a^{15}+\frac{643}{20}a^{14}-\frac{2121}{20}a^{13}+\frac{4933}{20}a^{12}-\frac{8213}{20}a^{11}+\frac{4241}{10}a^{10}-\frac{367}{5}a^{9}-\frac{3031}{5}a^{8}+\frac{24447}{20}a^{7}-\frac{11931}{10}a^{6}+\frac{2537}{5}a^{5}+\frac{942}{5}a^{4}-\frac{7871}{20}a^{3}+\frac{2343}{20}a^{2}+\frac{507}{10}a-\frac{91}{5}$, $\frac{1}{100}a^{16}-\frac{2}{25}a^{15}-\frac{39}{100}a^{14}+\frac{413}{100}a^{13}-\frac{1899}{100}a^{12}+\frac{5661}{100}a^{11}-\frac{5273}{50}a^{10}+\frac{5817}{50}a^{9}-\frac{719}{50}a^{8}-\frac{20371}{100}a^{7}+\frac{8461}{25}a^{6}-\frac{6026}{25}a^{5}+\frac{104}{25}a^{4}+\frac{13573}{100}a^{3}-\frac{4889}{100}a^{2}-\frac{562}{25}a+\frac{89}{25}$, $\frac{347}{100}a^{17}-\frac{2583}{100}a^{16}+\frac{11563}{100}a^{15}-\frac{8974}{25}a^{14}+\frac{19074}{25}a^{13}-\frac{5552}{5}a^{12}+\frac{79771}{100}a^{11}+\frac{3209}{5}a^{10}-\frac{64461}{25}a^{9}+\frac{352689}{100}a^{8}-\frac{41227}{20}a^{7}-\frac{13964}{25}a^{6}+\frac{8881}{5}a^{5}-\frac{109161}{100}a^{4}-\frac{20077}{50}a^{3}+\frac{42067}{100}a^{2}+\frac{1232}{25}a-\frac{823}{25}$, $\frac{1}{100}a^{16}-\frac{2}{25}a^{15}-\frac{49}{100}a^{14}+\frac{483}{100}a^{13}-\frac{2199}{100}a^{12}+\frac{6551}{100}a^{11}-\frac{6163}{50}a^{10}+\frac{3511}{25}a^{9}-\frac{727}{25}a^{8}-\frac{22021}{100}a^{7}+\frac{19527}{50}a^{6}-\frac{7656}{25}a^{5}+\frac{1064}{25}a^{4}+\frac{13393}{100}a^{3}-\frac{6289}{100}a^{2}-\frac{679}{50}a+\frac{169}{25}$, $\frac{9039}{100}a^{17}-\frac{3066}{5}a^{16}+\frac{258223}{100}a^{15}-\frac{746451}{100}a^{14}+\frac{282929}{20}a^{13}-\frac{1713929}{100}a^{12}+\frac{109357}{25}a^{11}+\frac{1342397}{50}a^{10}-\frac{1358446}{25}a^{9}+\frac{205565}{4}a^{8}-\frac{159233}{50}a^{7}-\frac{1920109}{50}a^{6}+\frac{812114}{25}a^{5}-\frac{279001}{100}a^{4}-\frac{448939}{20}a^{3}+\frac{7877}{5}a^{2}+\frac{284939}{50}a+\frac{27183}{25}$, $\frac{90239}{20}a^{17}-\frac{4289259}{100}a^{16}+\frac{22477347}{100}a^{15}-\frac{40890237}{50}a^{14}+\frac{107363019}{50}a^{13}-\frac{103028701}{25}a^{12}+\frac{547042581}{100}a^{11}-\frac{92432539}{25}a^{10}-\frac{133447653}{50}a^{9}+\frac{1123621187}{100}a^{8}-\frac{1586535641}{100}a^{7}+\frac{600317437}{50}a^{6}-\frac{75322511}{25}a^{5}-\frac{346096169}{100}a^{4}+\frac{181176449}{50}a^{3}-\frac{62741949}{100}a^{2}-\frac{24631219}{50}a+\frac{3549769}{25}$, $\frac{46479037}{50}a^{17}-\frac{702600803}{100}a^{16}+\frac{1585143291}{50}a^{15}-\frac{9931709249}{100}a^{14}+\frac{21381165071}{100}a^{13}-\frac{31654204097}{100}a^{12}+\frac{4802612413}{20}a^{11}+\frac{7812385501}{50}a^{10}-\frac{35579710073}{50}a^{9}+\frac{25278023781}{25}a^{8}-\frac{63743885163}{100}a^{7}-\frac{518643216}{5}a^{6}+\frac{12148904487}{25}a^{5}-\frac{16440158857}{50}a^{4}-\frac{8870686149}{100}a^{3}+\frac{12198934827}{100}a^{2}+\frac{207410403}{25}a-\frac{258315739}{25}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 5673649067000 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{10}\cdot(2\pi)^{4}\cdot 5673649067000 \cdot 1}{2\cdot\sqrt{36163754150128780430177325000000000000}}\cr\approx \mathstrut & 0.752861606595519 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 45*x^16 - 156*x^15 + 384*x^14 - 672*x^13 + 749*x^12 - 204*x^11 - 1008*x^10 + 2191*x^9 - 2253*x^8 + 876*x^7 + 684*x^6 - 1107*x^5 + 414*x^4 + 269*x^3 - 180*x^2 - 24*x + 16) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 9*x^17 + 45*x^16 - 156*x^15 + 384*x^14 - 672*x^13 + 749*x^12 - 204*x^11 - 1008*x^10 + 2191*x^9 - 2253*x^8 + 876*x^7 + 684*x^6 - 1107*x^5 + 414*x^4 + 269*x^3 - 180*x^2 - 24*x + 16, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 9*x^17 + 45*x^16 - 156*x^15 + 384*x^14 - 672*x^13 + 749*x^12 - 204*x^11 - 1008*x^10 + 2191*x^9 - 2253*x^8 + 876*x^7 + 684*x^6 - 1107*x^5 + 414*x^4 + 269*x^3 - 180*x^2 - 24*x + 16); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 9*x^17 + 45*x^16 - 156*x^15 + 384*x^14 - 672*x^13 + 749*x^12 - 204*x^11 - 1008*x^10 + 2191*x^9 - 2253*x^8 + 876*x^7 + 684*x^6 - 1107*x^5 + 414*x^4 + 269*x^3 - 180*x^2 - 24*x + 16); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^5.S_4^2$ (as 18T623):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 18432
The 120 conjugacy class representatives for $C_2^5.S_4^2$
Character table for $C_2^5.S_4^2$

Intermediate fields

3.3.1620.1, 3.3.1300.1, 9.9.5837879385000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.4.0.1}{4} }^{3}{,}\,{\href{/padicField/7.2.0.1}{2} }^{3}$ ${\href{/padicField/11.6.0.1}{6} }^{3}$ R ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{3}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.6.0.1}{6} }$ ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.6.0.1}{6} }$ ${\href{/padicField/29.3.0.1}{3} }^{6}$ ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.6.0.1}{6} }$ ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{5}$ ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}$ ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.6.0.1}{6} }$ ${\href{/padicField/47.4.0.1}{4} }^{4}{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}$ ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.1.3.2a1.1$x^{3} + 2$$3$$1$$2$$S_3$$$[\ ]_{3}^{2}$$
2.1.3.2a1.1$x^{3} + 2$$3$$1$$2$$S_3$$$[\ ]_{3}^{2}$$
2.4.3.8a1.2$x^{12} + 3 x^{9} + 3 x^{8} + 3 x^{6} + 6 x^{5} + 3 x^{4} + x^{3} + 3 x^{2} + 3 x + 3$$3$$4$$8$$C_3 : C_4$$$[\ ]_{3}^{4}$$
\(3\) Copy content Toggle raw display 3.6.3.24a1.1$x^{18} + 6 x^{16} + 15 x^{14} + 6 x^{13} + 29 x^{12} + 24 x^{11} + 51 x^{10} + 36 x^{9} + 72 x^{8} + 60 x^{7} + 85 x^{6} + 78 x^{5} + 69 x^{4} + 44 x^{3} + 60 x^{2} + 48 x + 23$$3$$6$$24$$S_3 \times C_3$not computed
\(5\) Copy content Toggle raw display 5.2.3.4a1.2$x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 48 x + 13$$3$$2$$4$$S_3$$$[\ ]_{3}^{2}$$
5.2.6.10a1.2$x^{12} + 24 x^{11} + 252 x^{10} + 1520 x^{9} + 5820 x^{8} + 14784 x^{7} + 25376 x^{6} + 29568 x^{5} + 23280 x^{4} + 12160 x^{3} + 4032 x^{2} + 768 x + 69$$6$$2$$10$$D_6$$$[\ ]_{6}^{2}$$
\(13\) Copy content Toggle raw display 13.2.1.0a1.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
13.2.1.0a1.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
13.2.1.0a1.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
13.2.2.2a1.2$x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
13.4.2.4a1.2$x^{8} + 6 x^{6} + 24 x^{5} + 13 x^{4} + 72 x^{3} + 156 x^{2} + 48 x + 17$$2$$4$$4$$C_4\times C_2$$$[\ ]_{2}^{4}$$
\(1061117\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
Deg $2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $4$$1$$4$$0$$C_4$$$[\ ]^{4}$$
Deg $4$$1$$4$$0$$C_4$$$[\ ]^{4}$$
Deg $4$$1$$4$$0$$C_4$$$[\ ]^{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)