Defining polynomial
|
$( x^{6} + 2 x^{4} + x^{2} + 2 x + 2 )^{3} + 3 ( x^{6} + 2 x^{4} + x^{2} + 2 x + 2 )^{2} + 3$
|
Invariants
| Base field: | $\Q_{3}$ |
| Degree $d$: | $18$ |
| Ramification index $e$: | $3$ |
| Residue field degree $f$: | $6$ |
| Discriminant exponent $c$: | $24$ |
| Discriminant root field: | $\Q_{3}(\sqrt{2})$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{3})$ $=$$\Gal(K/\Q_{3})$: | $C_3\times S_3$ |
| This field is Galois over $\Q_{3}.$ | |
| Visible Artin slopes: | $[2]$ |
| Visible Swan slopes: | $[1]$ |
| Means: | $\langle\frac{2}{3}\rangle$ |
| Rams: | $(1)$ |
| Jump set: | undefined |
| Roots of unity: | $728 = (3^{ 6 } - 1)$ |
Intermediate fields
| $\Q_{3}(\sqrt{2})$, 3.3.1.0a1.1, 3.1.3.4a1.1 x3, 3.6.1.0a1.1, 3.2.3.8a1.1, 3.2.3.8a1.2 x2, 3.3.3.12a1.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | 3.6.1.0a1.1 $\cong \Q_{3}(t)$ where $t$ is a root of
\( x^{6} + 2 x^{4} + x^{2} + 2 x + 2 \)
|
| Relative Eisenstein polynomial: |
\( x^{3} + 3 x^{2} + 3 \)
$\ \in\Q_{3}(t)[x]$
|
Ramification polygon
| Residual polynomials: | $z^2 + (2 t^3 + 2)$ |
| Associated inertia: | $1$ |
| Indices of inseparability: | $[2, 0]$ |
Invariants of the Galois closure
| Galois degree: | $18$ |
| Galois group: | $C_3\times S_3$ (as 18T3) |
| Inertia group: | not computed |
| Wild inertia group: | not computed |
| Galois unramified degree: | not computed |
| Galois tame degree: | not computed |
| Galois Artin slopes: | not computed |
| Galois Swan slopes: | not computed |
| Galois mean slope: | not computed |
| Galois splitting model: | not computed |