Properties

Label 2.4.3.8a1.2
Base \(\Q_{2}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(8\)
Galois group $C_3 : C_4$ (as 12T5)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{4} + x + 1 )^{3} + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification index $e$: $3$
Residue field degree $f$: $4$
Discriminant exponent $c$: $8$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{2})$ $=$$\Gal(K/\Q_{2})$: $C_3:C_4$
This field is Galois over $\Q_{2}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:$[3]$
Roots of unity:$30 = (2^{ 4 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.1.3.2a1.1 x3, 2.4.1.0a1.1, 2.2.3.4a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.4.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{4} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{2} + z + 1$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $12$
Galois group: $C_3:C_4$ (as 12T5)
Inertia group: Intransitive group isomorphic to $C_3$
Wild inertia group: $C_1$
Galois unramified degree: $4$
Galois tame degree: $3$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[]$
Galois mean slope: $0.6666666666666666$
Galois splitting model: $x^{12} - 3 x^{11} - 888 x^{10} + 2660 x^{9} + 308151 x^{8} - 878220 x^{7} - 53209587 x^{6} + 132388596 x^{5} + 4800412971 x^{4} - 8975649010 x^{3} - 213443493450 x^{2} + 211625342025 x + 3644274033955$ Copy content Toggle raw display