Properties

Label 18T623
Order \(18432\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $623$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,3,2,4)(5,6)(7,9,8,10)(13,15)(14,16)(17,18), (1,7,13)(2,8,14)(3,10,16,4,9,15)(5,12,18,6,11,17), (1,4,18,2,3,17)(5,8,10,6,7,9)(11,13,15)(12,14,16), (17,18), (5,12,6,11)(7,13)(8,14)(9,15)(10,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
6:  $S_3$ x 2
8:  $C_2^3$
12:  $D_{6}$ x 6
24:  $S_4$ x 2, $S_3 \times C_2^2$ x 2
36:  $S_3^2$
48:  $S_4\times C_2$ x 6
72:  12T37
96:  12T48 x 2
144:  12T83 x 2
288:  18T111 x 2
576:  $(A_4\wr C_2):C_2$, 16T1033
1152:  12T195, 18T266
2304:  12T239 x 2
4608:  18T461 x 2
9216:  18T545

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$ x 2

Degree 6: None

Degree 9: $S_3^2$

Low degree siblings

18T623 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 120 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $18432=2^{11} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.