Normalized defining polynomial
\( x^{16} - 2 x^{15} - 32 x^{14} + 36 x^{13} + 412 x^{12} - 184 x^{11} - 2872 x^{10} - 74 x^{9} + \cdots + 101 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[8, 4]$ |
| |
| Discriminant: |
\(90785223184384000000000000\)
\(\medspace = 2^{24}\cdot 5^{12}\cdot 53^{6}\)
|
| |
| Root discriminant: | \(41.92\) |
| |
| Galois root discriminant: | $2^{43/24}5^{5/6}53^{1/2}\approx 96.3736588314662$ | ||
| Ramified primes: |
\(2\), \(5\), \(53\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{8745}a^{14}+\frac{791}{1749}a^{13}-\frac{68}{265}a^{12}+\frac{1238}{8745}a^{11}+\frac{1846}{8745}a^{10}-\frac{326}{2915}a^{9}+\frac{527}{1749}a^{8}+\frac{3412}{8745}a^{7}+\frac{2516}{8745}a^{6}+\frac{1299}{2915}a^{5}-\frac{802}{8745}a^{4}-\frac{8}{583}a^{3}+\frac{403}{8745}a^{2}-\frac{2476}{8745}a-\frac{2512}{8745}$, $\frac{1}{21\cdots 75}a^{15}-\frac{58\cdots 44}{21\cdots 75}a^{14}-\frac{87\cdots 88}{70\cdots 25}a^{13}+\frac{33\cdots 74}{21\cdots 75}a^{12}-\frac{75\cdots 01}{21\cdots 75}a^{11}-\frac{10\cdots 44}{70\cdots 25}a^{10}-\frac{30\cdots 08}{21\cdots 75}a^{9}-\frac{36\cdots 38}{17\cdots 75}a^{8}+\frac{95\cdots 73}{19\cdots 25}a^{7}-\frac{19\cdots 49}{70\cdots 25}a^{6}-\frac{22\cdots 97}{76\cdots 17}a^{5}+\frac{15\cdots 46}{70\cdots 25}a^{4}+\frac{82\cdots 88}{21\cdots 75}a^{3}-\frac{11\cdots 81}{39\cdots 75}a^{2}-\frac{41\cdots 83}{19\cdots 25}a+\frac{25\cdots 61}{70\cdots 25}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1518316022818}{514968806770475}a^{15}-\frac{4717350667472}{514968806770475}a^{14}-\frac{43588052090552}{514968806770475}a^{13}+\frac{103281044235752}{514968806770475}a^{12}+\frac{518835023489492}{514968806770475}a^{11}-\frac{860383816769556}{514968806770475}a^{10}-\frac{35\cdots 54}{514968806770475}a^{9}+\frac{38\cdots 11}{514968806770475}a^{8}+\frac{18\cdots 44}{514968806770475}a^{7}+\frac{593658976130424}{514968806770475}a^{6}-\frac{11\cdots 62}{102993761354095}a^{5}-\frac{88\cdots 06}{514968806770475}a^{4}-\frac{50\cdots 66}{514968806770475}a^{3}-\frac{45\cdots 14}{514968806770475}a^{2}+\frac{40\cdots 46}{514968806770475}a+\frac{642711093715154}{514968806770475}$, $\frac{13\cdots 42}{70\cdots 25}a^{15}-\frac{11\cdots 29}{21\cdots 75}a^{14}-\frac{11\cdots 89}{21\cdots 75}a^{13}+\frac{82\cdots 88}{70\cdots 25}a^{12}+\frac{12\cdots 69}{21\cdots 75}a^{11}-\frac{18\cdots 67}{21\cdots 75}a^{10}-\frac{28\cdots 01}{70\cdots 25}a^{9}+\frac{58\cdots 62}{17\cdots 75}a^{8}+\frac{40\cdots 53}{19\cdots 25}a^{7}+\frac{14\cdots 18}{21\cdots 75}a^{6}-\frac{80\cdots 33}{12\cdots 95}a^{5}-\frac{25\cdots 17}{21\cdots 75}a^{4}-\frac{72\cdots 79}{70\cdots 25}a^{3}-\frac{93\cdots 48}{21\cdots 75}a^{2}-\frac{18\cdots 48}{19\cdots 25}a-\frac{47\cdots 47}{21\cdots 75}$, $\frac{62\cdots 37}{21\cdots 75}a^{15}-\frac{20\cdots 98}{21\cdots 75}a^{14}-\frac{17\cdots 93}{21\cdots 75}a^{13}+\frac{47\cdots 68}{21\cdots 75}a^{12}+\frac{69\cdots 51}{70\cdots 25}a^{11}-\frac{42\cdots 04}{21\cdots 75}a^{10}-\frac{14\cdots 86}{21\cdots 75}a^{9}+\frac{18\cdots 59}{19\cdots 25}a^{8}+\frac{42\cdots 29}{12\cdots 75}a^{7}-\frac{24\cdots 09}{21\cdots 75}a^{6}-\frac{46\cdots 18}{38\cdots 85}a^{5}-\frac{29\cdots 79}{21\cdots 75}a^{4}-\frac{72\cdots 94}{21\cdots 75}a^{3}+\frac{26\cdots 83}{70\cdots 25}a^{2}+\frac{76\cdots 03}{32\cdots 75}a+\frac{36\cdots 11}{21\cdots 75}$, $\frac{55\cdots 59}{42\cdots 35}a^{15}-\frac{19\cdots 81}{42\cdots 35}a^{14}-\frac{15\cdots 61}{42\cdots 35}a^{13}+\frac{42\cdots 56}{42\cdots 35}a^{12}+\frac{55\cdots 57}{14\cdots 45}a^{11}-\frac{35\cdots 63}{42\cdots 35}a^{10}-\frac{10\cdots 42}{42\cdots 35}a^{9}+\frac{14\cdots 58}{38\cdots 85}a^{8}+\frac{16\cdots 29}{12\cdots 95}a^{7}-\frac{85\cdots 58}{42\cdots 35}a^{6}-\frac{27\cdots 90}{69\cdots 47}a^{5}-\frac{26\cdots 33}{42\cdots 35}a^{4}-\frac{24\cdots 28}{42\cdots 35}a^{3}-\frac{47\cdots 39}{14\cdots 45}a^{2}-\frac{40\cdots 47}{38\cdots 85}a-\frac{18\cdots 73}{42\cdots 35}$, $\frac{12\cdots 08}{21\cdots 75}a^{15}-\frac{37\cdots 82}{21\cdots 75}a^{14}-\frac{38\cdots 87}{21\cdots 75}a^{13}+\frac{81\cdots 37}{21\cdots 75}a^{12}+\frac{15\cdots 59}{70\cdots 25}a^{11}-\frac{65\cdots 86}{21\cdots 75}a^{10}-\frac{30\cdots 99}{21\cdots 75}a^{9}+\frac{24\cdots 56}{19\cdots 25}a^{8}+\frac{44\cdots 03}{57\cdots 25}a^{7}+\frac{35\cdots 69}{21\cdots 75}a^{6}-\frac{88\cdots 47}{38\cdots 85}a^{5}-\frac{84\cdots 11}{21\cdots 75}a^{4}-\frac{62\cdots 21}{21\cdots 75}a^{3}-\frac{67\cdots 28}{70\cdots 25}a^{2}-\frac{22\cdots 34}{19\cdots 25}a+\frac{12\cdots 49}{21\cdots 75}$, $\frac{43\cdots 43}{42\cdots 35}a^{15}-\frac{20\cdots 47}{42\cdots 35}a^{14}-\frac{10\cdots 62}{42\cdots 35}a^{13}+\frac{47\cdots 47}{42\cdots 35}a^{12}+\frac{33\cdots 94}{14\cdots 45}a^{11}-\frac{45\cdots 41}{42\cdots 35}a^{10}-\frac{59\cdots 79}{42\cdots 35}a^{9}+\frac{20\cdots 96}{34\cdots 35}a^{8}+\frac{10\cdots 68}{12\cdots 95}a^{7}-\frac{69\cdots 11}{42\cdots 35}a^{6}-\frac{28\cdots 87}{76\cdots 17}a^{5}-\frac{24\cdots 26}{42\cdots 35}a^{4}+\frac{18\cdots 29}{42\cdots 35}a^{3}+\frac{63\cdots 17}{14\cdots 45}a^{2}+\frac{63\cdots 11}{38\cdots 85}a+\frac{12\cdots 49}{42\cdots 35}$, $\frac{26\cdots 16}{70\cdots 25}a^{15}-\frac{22\cdots 92}{21\cdots 75}a^{14}-\frac{23\cdots 72}{21\cdots 75}a^{13}+\frac{16\cdots 99}{70\cdots 25}a^{12}+\frac{28\cdots 12}{21\cdots 75}a^{11}-\frac{38\cdots 66}{21\cdots 75}a^{10}-\frac{65\cdots 98}{70\cdots 25}a^{9}+\frac{14\cdots 61}{19\cdots 25}a^{8}+\frac{93\cdots 44}{19\cdots 25}a^{7}+\frac{24\cdots 64}{21\cdots 75}a^{6}-\frac{18\cdots 94}{12\cdots 95}a^{5}-\frac{53\cdots 66}{21\cdots 75}a^{4}-\frac{12\cdots 92}{70\cdots 25}a^{3}-\frac{10\cdots 54}{21\cdots 75}a^{2}-\frac{57\cdots 54}{19\cdots 25}a-\frac{10\cdots 06}{21\cdots 75}$, $\frac{13\cdots 76}{19\cdots 25}a^{15}-\frac{10\cdots 88}{63\cdots 75}a^{14}-\frac{40\cdots 39}{19\cdots 25}a^{13}+\frac{61\cdots 29}{19\cdots 25}a^{12}+\frac{49\cdots 14}{19\cdots 25}a^{11}-\frac{36\cdots 77}{19\cdots 25}a^{10}-\frac{33\cdots 98}{19\cdots 25}a^{9}+\frac{19\cdots 34}{63\cdots 75}a^{8}+\frac{17\cdots 88}{19\cdots 25}a^{7}+\frac{14\cdots 33}{19\cdots 25}a^{6}-\frac{88\cdots 23}{38\cdots 85}a^{5}-\frac{11\cdots 72}{19\cdots 25}a^{4}-\frac{12\cdots 62}{19\cdots 25}a^{3}-\frac{58\cdots 98}{17\cdots 75}a^{2}-\frac{42\cdots 06}{63\cdots 75}a+\frac{75\cdots 73}{19\cdots 25}$, $\frac{30\cdots 76}{70\cdots 25}a^{15}-\frac{27\cdots 22}{21\cdots 75}a^{14}-\frac{26\cdots 92}{21\cdots 75}a^{13}+\frac{19\cdots 44}{70\cdots 25}a^{12}+\frac{31\cdots 27}{21\cdots 75}a^{11}-\frac{49\cdots 36}{21\cdots 75}a^{10}-\frac{70\cdots 93}{70\cdots 25}a^{9}+\frac{17\cdots 86}{17\cdots 75}a^{8}+\frac{10\cdots 14}{19\cdots 25}a^{7}+\frac{83\cdots 19}{21\cdots 75}a^{6}-\frac{20\cdots 77}{12\cdots 95}a^{5}-\frac{53\cdots 81}{21\cdots 75}a^{4}-\frac{11\cdots 37}{70\cdots 25}a^{3}-\frac{87\cdots 74}{21\cdots 75}a^{2}-\frac{38\cdots 84}{19\cdots 25}a-\frac{15\cdots 46}{21\cdots 75}$, $\frac{21\cdots 38}{21\cdots 75}a^{15}-\frac{24\cdots 44}{70\cdots 25}a^{14}-\frac{60\cdots 82}{21\cdots 75}a^{13}+\frac{17\cdots 77}{21\cdots 75}a^{12}+\frac{68\cdots 07}{21\cdots 75}a^{11}-\frac{15\cdots 01}{21\cdots 75}a^{10}-\frac{80\cdots 58}{39\cdots 75}a^{9}+\frac{21\cdots 97}{63\cdots 75}a^{8}+\frac{19\cdots 54}{19\cdots 25}a^{7}-\frac{62\cdots 46}{21\cdots 75}a^{6}-\frac{13\cdots 19}{38\cdots 85}a^{5}-\frac{10\cdots 86}{21\cdots 75}a^{4}-\frac{64\cdots 56}{21\cdots 75}a^{3}-\frac{20\cdots 39}{21\cdots 75}a^{2}-\frac{12\cdots 48}{63\cdots 75}a+\frac{26\cdots 74}{21\cdots 75}$, $\frac{18\cdots 59}{21\cdots 75}a^{15}-\frac{99\cdots 37}{39\cdots 75}a^{14}-\frac{17\cdots 42}{70\cdots 25}a^{13}+\frac{11\cdots 26}{21\cdots 75}a^{12}+\frac{12\cdots 82}{39\cdots 75}a^{11}-\frac{30\cdots 26}{70\cdots 25}a^{10}-\frac{43\cdots 52}{21\cdots 75}a^{9}+\frac{34\cdots 38}{19\cdots 25}a^{8}+\frac{20\cdots 77}{19\cdots 25}a^{7}+\frac{14\cdots 04}{70\cdots 25}a^{6}-\frac{12\cdots 91}{38\cdots 85}a^{5}-\frac{38\cdots 01}{70\cdots 25}a^{4}-\frac{83\cdots 58}{21\cdots 75}a^{3}-\frac{25\cdots 82}{21\cdots 75}a^{2}-\frac{22\cdots 32}{19\cdots 25}a+\frac{66\cdots 84}{70\cdots 25}$
|
| |
| Regulator: | \( 19525572.1304 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 19525572.1304 \cdot 1}{2\cdot\sqrt{90785223184384000000000000}}\cr\approx \mathstrut & 0.408813876291 \end{aligned}\] (assuming GRH)
Galois group
$(C_2^2\times D_4):S_4$ (as 16T1054):
| A solvable group of order 768 |
| The 31 conjugacy class representatives for $(C_2^2\times D_4):S_4$ |
| Character table for $(C_2^2\times D_4):S_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.21200.1, 8.8.11236000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.0.58102542838005760000000000.3 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.4.0.1}{4} }$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ | R | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.8.24b2.5 | $x^{16} + 8 x^{15} + 38 x^{14} + 126 x^{13} + 322 x^{12} + 660 x^{11} + 1116 x^{10} + 1578 x^{9} + 1881 x^{8} + 1892 x^{7} + 1600 x^{6} + 1126 x^{5} + 650 x^{4} + 300 x^{3} + 108 x^{2} + 28 x + 7$ | $8$ | $2$ | $24$ | 16T193 | $$[\frac{4}{3}, \frac{4}{3}, 2, 2]_{3}^{2}$$ |
|
\(5\)
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 5.2.6.10a1.2 | $x^{12} + 24 x^{11} + 252 x^{10} + 1520 x^{9} + 5820 x^{8} + 14784 x^{7} + 25376 x^{6} + 29568 x^{5} + 23280 x^{4} + 12160 x^{3} + 4032 x^{2} + 768 x + 69$ | $6$ | $2$ | $10$ | $D_6$ | $$[\ ]_{6}^{2}$$ | |
|
\(53\)
| 53.2.1.0a1.1 | $x^{2} + 49 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 53.2.1.0a1.1 | $x^{2} + 49 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 53.2.2.2a1.2 | $x^{4} + 98 x^{3} + 2405 x^{2} + 196 x + 57$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 53.2.2.2a1.2 | $x^{4} + 98 x^{3} + 2405 x^{2} + 196 x + 57$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 53.2.2.2a1.2 | $x^{4} + 98 x^{3} + 2405 x^{2} + 196 x + 57$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |