Properties

Label 53.2.1.0a1.1
Base Q53\Q_{53}
Degree 22
e 11
f 22
c 00
Galois group C2C_2 (as 2T1)

Related objects

Downloads

Learn more

Defining polynomial

x2+49x+2x^{2} + 49 x + 2 Copy content Toggle raw display

Invariants

Base field: Q53\Q_{53}
Degree dd: 22
Ramification index ee: 11
Residue field degree ff: 22
Discriminant exponent cc: 00
Discriminant root field: Q53(2)\Q_{53}(\sqrt{2})
Root number: 11
Aut(K/Q53)\Aut(K/\Q_{53}) ==Gal(K/Q53)\Gal(K/\Q_{53}): C2C_2
This field is Galois and abelian over Q53.\Q_{53}.
Visible Artin slopes:[ ][\ ]
Visible Swan slopes:[ ][\ ]
Means: \langle\ \rangle
Rams:( )(\ )
Jump set:undefined
Roots of unity:2808=(5321)2808 = (53^{ 2 } - 1)

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and Q53\Q_{ 53 }.

Canonical tower

Unramified subfield:Q53(2)\Q_{53}(\sqrt{2}) Q53(t)\cong \Q_{53}(t) where tt is a root of x2+49x+2 x^{2} + 49 x + 2 Copy content Toggle raw display
Relative Eisenstein polynomial: x53 x - 53  Q53(t)[x]\ \in\Q_{53}(t)[x] Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois degree: 22
Galois group: C2C_2 (as 2T1)
Inertia group: trivial
Wild inertia group: C1C_1
Galois unramified degree: 22
Galois tame degree: 11
Galois Artin slopes: [ ][\ ]
Galois Swan slopes: [ ][\ ]
Galois mean slope: 0.00.0
Galois splitting model:x2x+5x^{2} - x + 5